EncyclopediaSpace

വ്യാഴം

സൂര്യനിൽ നിന്ന് അഞ്ചാമത്തേതും സൗരയൂഥത്തിലെ ഏറ്റവും വലിയ ഗ്രഹവുമാണ് വ്യാഴം.സൗരപിണ്ഡത്തിന്റെ ആയിരത്തിലൊന്നി നേക്കാൾ അൽപ്പം മാത്രം കുറവ് പിണ്ഡമുള്ള ഒരു വാതകഗോളമാണ് വ്യാഴം. സൗരയൂഥത്തിലെ മറ്റെല്ലാ ഗ്രഹങ്ങളുടേയും മൊത്തം പിണ്ഡത്തിന്റെ രണ്ടര ഇരട്ടി വരും ഇത്. വ്യാഴത്തിനു പുറമേ ശനി, യുറാനസ്, നെപ്ട്യൂൺ എന്നിവയും വാതകഭീമന്മാരാണ്‌, ഈ നാല്‌ ഗ്രഹങ്ങളെ ഒരുമിച്ച് ജൊവിയൻ ഗ്രഹങ്ങൾ എന്നും വിളിക്കുന്നു.
പുരാതനകാലം മുതലേയുള്ള വാനനിരീക്ഷകർക്ക് ഈ ഗ്രഹം പരിചിതമായിരുന്നു, വിവിധ ഐതിഹ്യങ്ങളുടേയും മതങ്ങളുടേയും സംസ്കാരങ്ങളുടേയും ഭാഗമായി ഈ ഗ്രഹം പ്രതിപാദിക്കപ്പെട്ടിട്ടുണ്ട്. റോമാക്കാർ അവരുടെ ദേവനായ ജൂപ്പിറ്ററിന്റെ പേരാണ്‌ ഗ്രഹത്തിന്‌ നൽകിയിരിക്കുന്നത്. ഭൂമിയിൽ നിന്നും വീക്ഷിക്കുമ്പോൾ പരമാവധി -2.94 ദൃശ്യകാന്തിമാനത്തോടെ വരെ വ്യാഴം ദൃശ്യമാകുന്നു, അതുകൊണ്ടുതന്നെ രാത്രി ആകാശത്തിൽ ചന്ദ്രനും ശുക്രനും ശേഷം ഏറ്റവും തിളക്കത്തോടെ ദൃശ്യമാകുന്ന ജ്യോതിർവസ്തുവാണ് വ്യാഴം (ചൊവ്വയുടെ തിളക്കം ചില അവസരങ്ങളിൽ വ്യാഴത്തോളം എത്താറുണ്ട്).
ഹൈഡ്രജനാണ് വ്യാഴത്തിന്റെ മുഖ്യ ഘടകമെങ്കിലും കാൽഭാഗത്തോളം ഹീലിയമുണ്ട്; കൂടുതൽ ഭാര മൂലകങ്ങളടങ്ങിയ ഉറച്ച കാമ്പ് ഗ്രഹത്തിന് ഉണ്ടായിരിക്കാം. കൂടുതൽ വേഗതയുള്ള ഭ്രമണമായതിനാൽ മധ്യരേഖയേക്കാർ വ്യാസം കുറഞ്ഞ ധ്രുവങ്ങളോടെയുള്ള ദീർഘഗോളാകാരമാണ് വ്യാഴത്തിന്റെ ആകൃതി. വ്യത്യസ്ത അക്ഷാംശങ്ങളിൽ വേർതിരിക്കപ്പെട്ട രീതിയിലാണ്‌ ഗ്രഹത്തിന്റെ ഏറ്റവും പുറമേയുള്ള അന്തരീക്ഷം സ്ഥിതിചെയ്യുന്നത്, ഇത് അവയുടെ അതിർ വരമ്പുകളിൽ ചില പ്രക്ഷുബ്ധതകൾ സൃഷ്ടിക്കുന്നുണ്ട്. ഈ പ്രക്ഷുബ്ധതകളിൽ ഏറ്റവും പ്രമുഖമാണ്‌ ചുവന്ന ഭീമൻ പൊട്ട്, പതിനേഴാം നൂറ്റാണ്ടിൽ ആദ്യമായി ഗ്രഹത്തെ ദൂരദർശിനിയിൽ നിരീക്ഷിക്കാൻ സാധിച്ചതുമുതൽ ഗ്രഹത്തിൽ കാണപ്പെടുന്ന ഒരു ഭീമൻ ചുഴലിക്കാറ്റാണിത്. ചുറ്റുമായി ചിതറിക്കിടക്കുന്ന ഉപഗ്രഹവ്യവസ്ഥയും ശക്തമായ കാന്തമണ്ഡലവും വ്യാഴത്തിനുണ്ട്. 1610-ൽ ഗലീലിയോ ഗലീലി കണ്ടെത്തിയ നാല്‌ വലിയ ഉപഗ്രഹങ്ങളടക്കം കുറഞ്ഞത് 63 ഉപഗ്രഹങ്ങളെങ്കിലും വ്യാഴത്തിനുണ്ട്. സൗരയൂഥത്തിലെത്തന്നെ ഏറ്റവും വലിയ ഉപഗ്രഹമായ ഗാനിമീഡിന്‌ ബുധനേക്കാൾ വലിപ്പമുണ്ട്.
ഏതാനും പേടകങ്ങൾ വ്യാഴത്തെ സന്ദർശിച്ചിട്ടുണ്ട്, ആദ്യകാലങ്ങളിൽ നടത്തിയ പയനിയർ, വൊയേജർ ദൗത്യങ്ങൾ പിന്നീട് നടന്ന ഗലീലിയോ ഓർബിറ്റർ എന്നിവയാണ് അവയിലെ പ്രധാനപ്പെട്ടവ. പ്ലൂട്ടോയെ ലക്ഷ്യമാക്കി ഫെബ്രുവരി 2007 ൽ യാത്രതിരിച്ച ന്യൂ ഹറിസൺസ് (New Horizons) പേടകമാണ്‌ ഏറ്റവുമൊടുവിൽ വ്യാഴത്തെ സന്ദർശിച്ചത്. വേഗത വർദ്ധിപ്പിക്കുന്നതിനായി വ്യാഴത്തിന്റെ ഗുരുത്വബലം പേടകം ഉപയോഗപ്പെടുത്തിയിരുന്നു. ഉപഗ്രഹമായ യൂറോപ്പയിലെ ഹിമത്താൽ ആവരണം ചെയ്യപ്പെട്ടിരിക്കുന്ന ദ്രാവക സമുദ്രം ഭാവിയിൽ നടത്താനിരിക്കുന്ന പര്യവേഷണങ്ങളിലെ പ്രധാന ലക്ഷ്യങ്ങളിലൊന്നാണ്‌.
ഘടന
2000-ൽ കാസ്സിനി പേടകം പകർത്തിയ ചിത്രങ്ങൾ സമന്വയിപ്പിച്ചുള്ള ചിത്രം. കറുത്ത പൊട്ടായി കാണുന്നത് ഉപഗ്രഹമായ യൂറോപ്പയുടെ നിഴലാണ്.
ഖരപദാർത്ഥങ്ങൾ പ്രധാന ഘടകമല്ലാത്ത നാല്‌ വാതകഭീമൻ ഗ്രഹങ്ങളിലൊന്നാണ്‌ വ്യാഴം. മധ്യരേഖയിൽ 142,984 കിലോമീറ്റർ വ്യാസമുള്ള ഇത് സൗരയൂഥത്തിലെ ഗ്രഹങ്ങളിൽ ഏറ്റവും വലുതാണ്‌. 1.326 ഗ്രാം/ഘന സെന്റിമീറ്റർ ആണ്‌ വ്യാഴത്തിന്റെ ശരാശരി സാന്ദ്രത, ഇത് വാതകഭീമൻമാരിൽ രണ്ടാമത്തെതാണെങ്കിലും നാല്‌ പാറഗ്രഹങ്ങളേക്കാൾ കുറവാണ്.
ഘടകങ്ങൾ
അടങ്ങിയിരിക്കുന്ന വാതക തന്മാത്രകളുടെ വ്യാപ്തമനുസരിച്ച് വ്യാഴത്തിന്റെ ഉപരിതല അന്തരീക്ഷത്തിൽ 88 മുതൽ 92 ശതമാനം വരെ ഹൈഡ്രജനും 8 മുതൽ 12 ശതമാനം വരെ ഹീലിയവും അടങ്ങിയിരിക്കുന്നു. ഹീലിയം ആറ്റത്തിന്‌ ഹൈഡ്രജൻ ആറ്റത്തേക്കാൾ ഏതാണ്ട് നാല്‌ മടങ്ങ് പിണ്ഡക്കൂടുതലുള്ളതിനാൽ അവയുടെ പിണ്ഡത്തിന്റെ അനുപാതം ഇതിൽ നിന്നും വ്യത്യസ്തമായിരിക്കും. അതുപ്രകാരം പിണ്ഡം കണക്കിലെടുക്കുയാണെങ്കിൽ 75 ശതമാനത്തോളം ഹൈഡ്രജനും 24 ശതമാനത്തോളം ഹീലിയവുമാണ്‌ അടങ്ങിയിരിക്കുന്നത്, ബാക്കി മറ്റ് മൂലകങ്ങളും. അതിനു തൊട്ടു താഴെയുള്ള ഭാഗം കൂടുതൽ സാന്ദ്രമാണ്‌, അവിടം 71 ശതമാനം ഹൈഡ്രജനും 24 ശതമാനം ഹീലിയവും 5 ശതമാനം ബാക്കി മൂലകങ്ങളും വരുന്നു. നേരിയതോതിൽ മീഥെയ്ൻ, ഹൈഡ്രജൻ സൾഫൈഡ്, നിയോൺ, ഓക്സിജൻ, ഫോസ്ഫൈൻ, സൾഫർ എന്നിവയും അന്തരീക്ഷത്തിലടങ്ങിയിരിക്കുന്നു. അന്തരീക്ഷത്തിന്റെ ഏറ്റവും പുറമേയുള്ള ഭാഗത്ത് തണുത്തുറഞ്ഞ അമോണിയയുടെ പരലുകളുടെ സാന്നിദ്ധ്യമുണ്ട്.ഇൻഫ്രാറെഡ്, അൾട്രാവയലെറ്റ് മാപന രീതികൾ വഴി ബെൻസീൻ തുടങ്ങിയ ഹൈഡ്രോകാർബണുകളുടെ അംശവും കണ്ടെത്താൻ കഴിഞ്ഞിട്ടുണ്ട്.
ആദി സൗരനെബുലയിലെ ഹൈഡ്രജന്റെയും ഹീലിയത്തിന്റേയും അനുപാതത്തിനു ഏതാണ്‌ സമാനമാണ്‌ ഗ്രഹാന്തരീക്ഷത്തിന്റേയും അനുപാതം. എങ്കിലും ദശലക്ഷത്തിൽ ഇരുപത് എന്ന നിരക്കിൽ മാത്രമാണ്‌ നിയോൺ അടങ്ങിയിട്ടുള്ളത്, ഇത് സൂര്യനിലേതിന്റെ പത്തിലൊന്ന് മാത്രമാണ്‌. ഹീലിയത്തിലും കാര്യമായ കുറവ് കാണപ്പെടുന്നു, സൂര്യന്റെ 80 ശതമാനം മാത്രമാണ്‌ ഹീലിയത്തിന്റെ അനുപാതം. ഗ്രഹാന്തർഭാഗത്ത് അവക്ഷിപ്തപ്പെട്ടത് മൂലമായിരിക്കാം ഈ കുറവ് സംഭവിച്ചതെന്ന് കരുതാം. എന്നാൽ വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിലെ ഭാര അലസ വാതകങ്ങളുടെ അനുപാതം സൂര്യനിലേതിനേക്കാൾ രണ്ടോ മൂന്നോ മടങ്ങുണ്ട്
സ്പെക്ട്രോസ്കോപ്പി മാപനങ്ങളനുസരിച്ച് ശനിക്കും ഏതാണ്ട് വ്യാഴത്തോട് സമാനമായ ഘടകാനുപാതമാണുള്ളത്, അതേസമയം മറ്റ് രണ്ട് വാതകഭീമന്മാരായ യുറാനസിനിലും നെപ്ട്യൂണിലും മറ്റ് രണ്ടെണ്ണത്തിൽ നിന്ന് വ്യത്യസ്തമായി ഹൈഡ്രജനും ഹീലിയവും താരതമ്യേന കുറഞ്ഞ അളവിലാണ് കാണപ്പെടുന്നത്. അന്തരീക്ഷം കടന്നുള്ള പര്യവേഷണങ്ങൾ നടക്കാത്തതിനാൽ വ്യാഴം മുതലുള്ള ഗ്രഹങ്ങളിലെ ഭാരമൂലകങ്ങളുടെ വ്യക്തമായ അളവ് നിലവിൽ ലഭ്യമല്ല.
പിണ്ഡം
സൗരയൂഥത്തിലെ മറ്റെല്ലാ ഗ്രഹങ്ങളുടേയും മൊത്തം പിണ്ഡത്തിന്റെ 2.5 ഇരട്ടി ഭാരമുണ്ട് വ്യാഴത്തിന്‌, വളരെയധികം ഉയർന്ന പിണ്ഡം ഈ ഗ്രഹത്തിന്റേയും സൂര്യന്റെയും പൊതുപിണ്ഡകേന്ദ്രം (barycenter) സൗരോപരിതലത്തിനു മുകളിൽ, സൗരകേന്ദ്രത്തിൽ നിന്നും 1.068 സൗരവ്യാസാർദ്ധം അകലെയാകാൻ കാരണമായിട്ടുണ്ട്. 11 ഇരട്ടി വ്യാസക്കൂടുതലുള്ള ഈ ഗ്രഹം ഭൂമിയെ സംബന്ധിച്ച് ഒരു ഭീമൻ ആണെങ്കിലും സാന്ദ്രത വളരെ കുറവാണ്‌. വ്യാഴത്തിന് ഭൂമിയുടെ 1,321 ഇരട്ടി വ്യാപ്തമുണ്ടെങ്കിലും പിണ്ഡം 318 ഇരട്ടി മാത്രമാണ്‌. സൂര്യന്റെ പത്തിലൊന്ന് വ്യാസാർദ്ധം ഇതിനുണ്ട്, പിണ്ഡം ആയിരത്തിലൊന്നും, ഇതുപ്രകാരം അവ രണ്ടിനും ഏതാണ്ട് ഒരേ സാന്ദ്രതയാണെന്ന് വരുന്നു. “വ്യാഴപിണ്ഡം” (MJ അല്ലെങ്കിൽ MJup എന്നും സൂചിപ്പിക്കുന്നു) മറ്റ് വസ്തുക്കളുടെ പിണ്ഡം വ്യക്തമാക്കാൻ ഉപയോഗിക്കാറുണ്ട്, പ്രത്യേകിച്ച് സൗരയൂഥേതര ഗ്രഹങ്ങളുടേയും തവിട്ടു കുള്ളൻമാരുടേയും കാര്യം വരുമ്പോൾ. ഉദാഹരണത്തിന്‌ സൗരയൂഥേതഗ്രഹങ്ങളായ HD 209458 b ക്ക് 0.69 വ്യാഴപിണ്ഡവും COROT-7b ക്ക് 0.015 വ്യാഴപിണ്ഡവുമാണുള്ളത്.
വ്യാഴത്തിന്‌ നിലവിലുള്ളതിനേക്കാൾ കുറേയധികം പിണ്ഡമുണ്ടായിരുന്നെങ്കിൽ അത് ചുരുങ്ങുമായിരുന്നു എന്നാണ്‌ സിദ്ധാന്താങ്ങൾ പ്രകാരമുള്ള അനുമാനങ്ങൾ കാണിക്കുന്നത്. പിണ്ഡത്തിൽ വരുന്ന ചെറിയ മാറ്റങ്ങൾ വ്യാസാർദ്ധത്തിൽ കാര്യമായ സ്വാധീനം ചെലുത്തില്ല, നാലിരട്ടി പിണ്ഡം ഉണ്ടായിരുന്നെങ്കിൽ വർദ്ധിച്ച ഗുരുത്വബലം ആന്തരീകഭാഗത്ത് കൂടുതൽ മർദ്ദം ചെലുത്തുകയും പിണ്ഡം പിന്നേയും വർദ്ധിക്കുകയാണെങ്കിൽ വ്യാപ്തത്തിൽ കുറവ് വരുത്തുകയും ചെയ്യും. ഈ രീതിയിൽ പിണ്ഡം കൂടുതലാകുന്നത് തുടർന്നാൽ ഒരവസരത്തിൽ വ്യാഴത്തിന്റെ 50 ഇരട്ടി പിണ്ഡമുള്ള തവിട്ടുകുള്ളന്മാർ ഉണ്ടാവുന്നതിനു കാരണമാകുന്ന രീതിയിലുള്ള ചെറിയ തോതിലുള്ള നക്ഷത്രജ്വലനം അന്തർഭാഗത്ത് ആരംഭിക്കുന്നതിനു കാരണമാകും. ഒന്നിൽ കൂടുതൽ നക്ഷത്രങ്ങളടങ്ങിയ വ്യൂഹങ്ങളുടെ സൃഷ്ടിക്ക് വ്യാഴത്തെ പോലെയുള്ള ഗ്രഹങ്ങളുടെ പങ്കിനെപ്പറ്റി വ്യക്തമായ ധാരണ ഇല്ലെങ്കിലും മുകളിൽ വിവരിച്ച അനുമാനങ്ങൾ കണക്കിലെടുത്ത് ചില ജ്യോതിശാസ്ത്രജ്ഞർ ഇതിനെ “പരാജയപ്പെട്ട നക്ഷത്രം” എന്ന് വിളിക്കാറുണ്ട്.
ഹൈഡ്രജൻ അണുക്കളുടെ ജ്വലനം സംഭവിച്ച് ഒരു നക്ഷത്രമാകാൻ വ്യാഴത്തിന് ചുരുങ്ങിയത് നിലവിലുള്ളതിന്റെ 75 മടങ്ങ് പിണ്ഡമെങ്കിലും ആവശ്യമാണെങ്കിലും അറിവിൽ പെടുന്ന ഏറ്റവും ചെറിയ ചുവപ്പ് കുള്ളന് വ്യാഴത്തേക്കാൾ 30 ശതമാനം കൂടുതൽ വ്യാസാർദ്ധം മാത്രമാണുള്ളത്. ഇതൊന്നും കൂടാതെ വ്യാഴം സൂര്യനിൽ നിന്നും ലഭിക്കുന്നതിൽ കൂടുതൽ താപം പുറത്ത് വിടുന്നുണ്ട്. ഗ്രഹാന്തർഭാഗത്ത് ഉല്പാദിപ്പിക്കപ്പെടുന്ന താപം ഏതാണ്ട് സൂര്യനിൽ നിന്നും ഗ്രഹത്തിന് ലഭിക്കുന്ന താപത്തിന്റെ അളവിനോളം വരും. തദ്ധോഷ്മ (adiabatic) പ്രക്രിയ വഴിയുള്ള കെൽവിൻ-ഹെൽമോൾസ് പ്രവർത്തനം വഴിയാണ്‌ ഈ താപം ഉല്പാദിക്കപ്പെടുന്നത്. ഈ രീതിയിൽ വർഷത്തിൽ 2 സെന്റീമീറ്റർ എന്ന നിരക്കിൽ വ്യാഴം ചുരുങ്ങുന്നുണ്ട്. രൂപപ്പെട്ട സമയം വ്യാഴം കൂടുതൽ താപമുള്ളതും ഇന്നുള്ളതിന്റെ ഇരട്ടി വ്യാസമുള്ളതുമായിരുന്നു.
ആന്തരിക ഘടന
വ്യാഴത്തിന്റെ ആന്തരിക ഘടന അനാവൃതമാക്കുന്ന ഒരു പരിച്ഛേദ ഘടനാ ചിത്രം, ഉറച്ച കാമ്പിനെ പൊതിഞ്ഞ് വളരെ ആഴത്തിൽ ലോഹ ഹൈഡ്രജൻ നിലകൊള്ളുന്നു.
വ്യത്യസ്ത മൂലകങ്ങളുടെ മിശ്രിതമാണ്‌ വ്യാഴത്തിന്റെ കാമ്പ്, ഇതിന്‌ ചുറ്റും അല്പം ഹീലിയം അടങ്ങിയ ദ്രവ ലോഹ ഹൈഡ്രജൻ സ്ഥിതി ചെയ്യുന്നു. ഏറ്റവും പുറമേയുള്ള പാളിയിൽ തന്മാത്ര ഹൈഡ്രജനാണ്‌ മുഖ്യ ഘടകം. ഈ അടിസ്ഥാന രേഖാചിത്രത്തിനു മീതെ കാര്യമായ അനിശ്ചിതത്വം നിലവിലുണ്ട്. കാമ്പ് ദൃഢമാണെന്ന് സൂചിപ്പിക്കാമെങ്കിലും അതിന്റെ ഘടകങ്ങളുടെ അനുപാതത്തെ കുറിച്ച് കാര്യമായ അറിവില്ല, അത്രയ്ക്കും ആഴത്തിലെ താപത്തിലും മർദ്ദത്തിലും പദാർത്ഥങ്ങളുടെ സ്വഭാവസവിശേഷതകൾ മാറുമെന്നതാണ്‌ ഒരു കാരണം. ഭൂമിയുടെ 12 മുതൽ 45 വരെ ഇരട്ടി പിണ്ഡത്തൊടുകൂടിയ, അതായത് വ്യാഴ പിണ്ഡത്തിന്റെ 3% മുതൽ 15% വരെ പിണ്ഡമുള്ള കാമ്പ് നിലനിൽക്കുന്നുവെന്നാണ്‌ 1997 നടത്തിയ ഗുരുത്വബല പഠനങ്ങൾ മുന്നോട്ട് വെക്കുന്നത്. ഗ്രഹരൂപീകരണ മാതൃകകൾ പ്രകാരം വ്യാഴത്തിന്റെ മുൻകാലങ്ങളിലെങ്കിലും പാറയാലോ ഹിമത്താലോ ഉള്ള കാമ്പ് ഉണ്ടായിരിന്നിരിക്കും, ഈ കാമ്പ് പ്രാഗ് സൗര നീഹാരികയിൽ നിന്നും ഹൈഡ്രജനേയും ഹീലിയത്തേയും ആകർഷിക്കുകയും ചെയ്തിരിക്കാം. അങ്ങനെ സംഭവിച്ചിട്ടുണ്ട് എന്ന് കണക്കിലെടുത്താൽ വളരെ ചൂടുള്ള ലോഹീയ ദ്രവ ഹൈഡ്രജൻ പ്രവാഹങ്ങൾ അതിലെ ഘടകങ്ങളെ ഗ്രഹാന്തർഭാഗത്തെ ഉയർന്ന പാളികളിലേക്ക് വഹിച്ചുകൊണ്ട് പോകുന്നതു വഴി കാമ്പ് ചുരുങ്ങുകയും ചെയ്യും. ഇതുപ്രകാരം നിലവിൽ കാമ്പ് ഇല്ലെന്നുതന്നെ വരാം, ഗുരുത്വബലത്തിന്റെ കൃത്യമായ മാപനം സാധ്യമായിട്ടില്ലാത്തതിനാൽ ഈ അനുമാനത്തെ പൂർണ്ണമായി അംഗീകരിക്കുവാനും സാധിക്കില്ല.
കൃത്യമായ ഗ്രഹമാതൃക കണക്കാക്കുന്നതിൽ ഇത്തരം അനിശ്ചിതത്വം വരുന്നത് വ്യാഴത്തിന്റെ ഗുരുത്വബല ആക്കം കണക്കാക്കുന്നതിൽ ഉപയോഗിക്കപ്പെട്ട ഭ്രമണ ഗുണാങ്കം, മധ്യരേഖ വ്യാസാർദ്ധം, 1 ബാർ മർദ്ദത്തിലെ താപനില തുടങ്ങിയവയുടെ വിലകളുമായി ബന്ധപ്പെട്ടാണ്. 2011 ൽ വിക്ഷേപിക്കപ്പെടുമെന്ന് അനുമാനിക്കുന്ന ജുനൊ (JUNO) സംരംഭം വഴി ഈ വിലകൾ വർദ്ധിച്ച കൃത്യതയോടെ ലഭിക്കുമെന്ന് പ്രത്യാശിക്കുന്നു, അതുവഴി കാമ്പ് സംബന്ധിച്ച പ്രശ്നപരിഹാരത്തിൽ മുന്നേറ്റമുണ്ടാകുമെന്നും കരുതുന്നു.
കാമ്പിനു ചുറ്റും സാന്ദ്രതയേറിയ ലോഹ ഹൈഡ്രജൻ സ്ഥിതി ചെയ്യുന്നുണ്ട്, ഇത് പുറത്തേക്ക് ഗ്രഹ വ്യാസാർദ്ധത്തിന്റെ 78 ശതമാനം ഭാഗത്തേക്ക് വരെ തുടരുന്നു. മഴത്തുള്ളി രൂപത്തിൽ ഹീലിയവും, നിയോണിന്റെ വർഷവും ഈ പാളിയിലൂടെ താഴേക്ക് സഞ്ചരിക്കുന്നു, ഇത് കാരണം പുറമേയുള്ള അന്തരീക്ഷത്തിൽ അവയുടെ കുറവ് വന്നുകൊണ്ടിരിക്കുന്നു.
ഈ ലോഹ ഹൈഡ്രജൻ പാളിക്ക് മുകളിൽ ദ്രാവക ഹൈഡ്രജനും വാതക ഹൈഡ്രജനും അടങ്ങിയ സുതാര്യമായ ആന്തരീക അന്തരീക്ഷം നിലനിൽക്കുന്നു, പുറമേ മേഘങ്ങൾ കാണപ്പെടുന്ന പാളിയിൽ നിന്ന് താഴോട്ട് 1000 കിലോ മീറ്റർ വരെ ഈ പാളിയിലെ വാതകരൂപത്തിലുള്ള ഭാഗം കിടക്കുന്നു. രണ്ട് അവസ്ഥകളിലുള്ള ഹൈഡ്രജൻ മേഖലകളെ വേർതിരിക്കുന്ന കൃത്യമായ അതിർത്തിയായിരിക്കില്ല ഉണ്ടാവുക, മറിച്ച് താഴേക്ക്‌ പോകും തോറും വാതകാവസ്ഥ ചുറ്റുപാടിൽ നിന്ന് പതിയെ ദ്രാവകാവസ്ഥ ചുറ്റുപാടിലേക്കുള്ള അവസ്ഥാമാറ്റം പ്രകടമാകുകയാണ്‌ ഉണ്ടാവുക. ഈ പതിയെയുള്ള അവസ്ഥാന്തരം താപനില ക്രിട്ടിക്കൽ ടെമ്പറേച്ചറിന്‌ മുകളിലാകുമ്പോഴൊക്കെ സംഭവിക്കുന്നു, 33 കെൽവിനാണ്‌ ഹൈഡ്രജന്റെ ക്രിട്ടിക്കൽ ടെമ്പറേച്ചർ.
വ്യാഴത്തിനകത്ത് കാമ്പിലേക്ക് നീങ്ങുംതോറും താപനിലയിലും മർദ്ദത്തിലും ഗണ്യമായ വർദ്ധനവുണ്ടാകുന്നു. ദ്രവ ഹൈഡ്രജനിൽ നിന്നും ക്രിറ്റിക്കൽ നിലയ്ക്ക് മുകളിൽ തപീകരിക്കപ്പെട്ട ലോഹ ഹൈഡ്രജനിലേക്ക് അവസ്ഥാമാറ്റം സംഭവിക്കുന്ന മേഖലയിലെ താപനില 10,000 കെൽവിനും മർദ്ദം 200 ഗിഗാ പാസ്ക്കലുമാണ്‌. കാമ്പിന്റെ അതിർത്തിയിലെ താപനില 36,000 കെൽവിനും അതിനകത്തെ മർദ്ദം ഏതാണ്ട് 3,000 ഗിഗാ പസ്കലിനും 4,500 ഗിഗാ പാസ്കലിനും ഇടയിലാണെന്നും കണക്കാക്കപ്പെട്ടിരിക്കുന്നു.
അന്തരീക്ഷം
സൗരയൂഥത്തിൽ ഏറ്റവും വലിയ അന്തരീക്ഷമുള്ള ഗ്രഹം വ്യാഴമാണ്‌, 5,000 കിലോമീറ്ററിലേറെ ഉന്നതിയിൽ ഇതിന്റെ അന്തരീക്ഷം വ്യാപിച്ചുകിടക്കുന്നു. വ്യക്തമായ ഉപരിതലമില്ലാത്തതിനാൽ തന്നെ 10 ബാർ മർദ്ദത്തിനു തുല്യമായ അതായത് ഭൂമിയിൽ ഉപരിതല മർദ്ദത്തിന്റെ പത്തിരട്ടി മർദ്ദത്തിനു തുല്യമായ വിതാനമാണ്‌ അന്തരീക്ഷത്തിന്റെ തുടക്കമായി കരുതുന്നത്.
മേഘ പാളികൾ
പ്രധാനമായും അമോണിയ പരലുകൾ അടങ്ങിയതും അമോണിയം ഹൈഡ്രോസൾഫൈഡ് അടങ്ങിയിരിക്കാൻ സാധ്യതയുള്ളതുമായ മേഘങ്ങൾ വ്യാഴത്തിനു മീതെയുണ്ട്. ട്രോപ്പോപോസിലാണ്‌ (tropopause) മേഘങ്ങൾ സ്ഥിതിചെയ്യുന്നത്, അവ വ്യത്യസ്ത അക്ഷാംശങ്ങളിൽ പ്രത്യേക ബാൻഡുകളിലായി വിഭജിക്കപ്പെട്ടിരിക്കുകയും ചെയ്യുന്നു. ഈ ബാൻഡുകൾ ഇളം നിറത്തിലുള്ള മേഖലകളായും കടും നിറത്തിലുള്ള പട്ടകളായും വിഭജിക്കപ്പെട്ടിരിക്കുന്നു. ഈ ചുറ്റിത്തിരിയുന്ന ഭാഗങ്ങൾ തമ്മിലുള്ള സംഘട്ടനങ്ങൾ കൊടുങ്കാറ്റുകളും പ്രക്ഷുബ്ധതകളും സൃഷ്ടിക്കുന്നു. 100 മീറ്റർ പ്രതി സെക്കന്റിലുള്ള (360 കിലോമീറ്റർ/മണിക്കൂർ) വേഗത്തിലുള്ള കാറ്റുകൾ ഈ മേഖലാ പ്രവാഹങ്ങളിൽ സാധാരണമാണ്‌.ഈ മേഖലകളുടെ വീതി, നിറം ഗാഢത എന്നിവ വർഷം തോറും മാറുന്നു, എങ്കിലും വാന നിരീക്ഷകർക്ക് അവ ഏതാണ്ട് മാറ്റമില്ലാത്തതുപോലെ കാണപ്പെടുന്നതിനാൽ സ്ഥാനസൂചനകൾക്ക് അവ സഹായിക്കുന്നു.
മേഘങ്ങളുൾക്കൊള്ളുന്ന പാളിയുടെ കനം 50 കിലോമീറ്റർ മാത്രമാണ്‌, താഴെ കട്ടികൂടിയ മേഖലയും മേലെ നേരിയ മേഖലയും ഉൾക്കൊള്ളുന്ന നിലയിൽ ഈ പാളിയിൽ രണ്ട് തട്ടുകളുണ്ട്. വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിൽ മിന്നലുകൾ സംഭവിക്കുന്നതിന്റെ തെളിവുകൾ കണ്ടെത്തിയതിനാൽ അമോണിയ പാളിക്കു കീഴെ ജലബാഷ്പത്തിന്റെ മേഘങ്ങൾ ഉണ്ടായിരിക്കാൻ സാധ്യതയുണ്ട് (ജലതന്മാത്ര പോളാർ ആയതിനാൽ അതിന്‌ ഇലക്ട്രിക്ക് ചാർജ് വഹിക്കാനും മിന്നലിനു കാരണമാകുന്ന തരത്തിൽ ചാർജ്ജ് വിഭജനം സൃഷ്ടിക്കാനും കഴിവുണ്ട്). ഇത്തരം ഇലക്ട്രിക്ക് ഡിസ്ചാർജ്ജുകൾ ഭൂമിയിൽ കാണപ്പെടുന്നതിനേക്കാൾ ആയിരം മടങ്ങ് വരെ ശക്തിയുള്ളതായിരിക്കാവുന്നതാണ്‌. ഗ്രഹാന്തർഭാഗത്ത് നിന്നും ബഹിർഗമിക്കുന്ന താപത്തിന്‌ ഫലമായി ജലമേഘങ്ങൾ മുഖേന ഇടിമിന്നലോടു കൂടിയ കൊടുങ്കാറ്റുകൾ ഉണ്ടാവുകയും ചെയ്യാം.
മുകളിലേക്കുയർന്ന് വരുന്ന സംയുക്തങ്ങൾക്ക് സൂര്യപ്രകാശത്തിലെ അൾട്രാവയലറ്റ് കിരണങ്ങളേൽക്കുമ്പോൾ നിറം മാറുന്നതാണ്‌ വ്യാഴത്തിലെ മേഘങ്ങളിൽ കാണുന്ന ഓറഞ്ച്, തവിട്ട് നിറങ്ങൾക്ക് കാരണം. അത്തരം പദാർത്ഥങ്ങളെപ്പറ്റിയുള്ള കൃത്യമായ വിവരം ലഭ്യമായിട്ടില്ലെങ്കിലും അവ ഫോസ്ഫറസ്, സൾഫർ, ഹൈഡ്രോ കാർബണുകൾ തുടങ്ങിയവയാകാം എന്ന് അനുമാനിക്കപ്പെടുന്നു. ഇത്തരം വർണ്ണ സംയുക്തങ്ങൾ ക്രോമോഫോറുകൾ (chromophores) എന്നറിയപ്പെടുന്നു, ഇവ താഴെതട്ടിലുള്ള ചൂടുള്ള മേഘങ്ങളുമായി കൂടിക്കലർന്ന് മുകളിലേക്കുയരുകയാണ്. പരലീകരിക്കപ്പെടുന്ന അമോണിയയുടെ ഉയർന്നുവരുന്ന സംവഹന സ്തംഭങ്ങൾ താഴെത്തട്ടിലുള്ള മേഘങ്ങളേയും കടന്ന് മുകളിലേക്ക് വരുമ്പോഴാണ്‌ ഇളം നിറത്തിലുള്ള സോണുകൾ രൂപപ്പെടുന്നത്.
അച്ചുതണ്ടിന്റെ കുറഞ്ഞ ചെരിവ് നിമിത്തം മധ്യരേഖാഭാഗങ്ങളേക്കാൾ കുറഞ്ഞ സൗരതാപം മാത്രമേ ധ്രുവഭാഗങ്ങൾക്ക് ലഭിക്കുന്നുള്ളൂ. ഗ്രഹാന്തർഭാഗത്തെ സംവഹനങ്ങൾ കൂടുതൽ താപോർജ്ജം ധ്രുവഭാഗത്തേക്ക് എത്തിക്കുന്നുണ്ട് അതുവഴി മേഘങ്ങൾ നിലനിൽക്കുന്ന പാളിയിലെല്ലായിടത്തും ഏതാണ്ട് ഒരേ താപനില കൈവരുന്നു.
ഭീമൻ ചുവന്ന പൊട്ടും മറ്റ് കൊടുങ്കാറ്റുകളും
1979 ഫെബ്രുവരി 25 വൊയേജർ 1 പേടകം പകർത്തിയതാണ് ഭീമൻ ചുവന്ന പൊട്ടിന്റെ ഈ ചിത്രം, ഈ ചിത്രം പകർത്തുന്ന വേളയിൽ പേടകം വ്യാഴത്തിൽ നിന്ന് 92 ലക്ഷം കിലോമീറ്റർ അകലെയായിരുന്നു. 160 കിലോമീറ്റർ വ്യക്തതയോടെ ചിത്രത്തിൽ മേഘങ്ങൾ കാണാൻ സാധിക്കും. ചുവന്ന പൊട്ടിന്റെ ഇടതായി വർണ്ണനിറത്തിൽ തരംഗരൂപത്തിൽ കാണപ്പെടുന്നത് അലകളുടെ രൂപത്തിലുള്ള മേഘങ്ങളുടെ അസാധാരണമായ സങ്കീർണ്ണ ചലനങ്ങളാണ്. വ്യാഴത്തിന്റെ വലിപ്പം മനസ്സിലാക്കാൻ ചുവന്ന പൊട്ടിനു തൊട്ട് താഴെയുള്ള വെള്ള ഓവൽ കൊടുങ്കാറ്റിനെ കണക്കിലെടുത്താൽ മതിയാകും, ഏതാണ്ട് ഭൂമിയുടെ വ്യാസത്തിനു തുല്യമായി വരും അത്.
വ്യാഴത്തിന്റെ ഏറ്റവും ശ്രദ്ധേയമായ പ്രത്യേകതകളിലൊന്നാണ് അതിലെ ഭീമൻ ചുവന്ന പൊട്ട്, മധ്യരേഖയിൽ നിന്നും തെക്ക് മാറി 22° അക്ഷാംശത്തിൽ സ്ഥിരമായി അപ്രദക്ഷിണദിശയിൽ വീശിയടിക്കുന്നതും ഭൂമിയേക്കാൾ വലിപ്പമുള്ളതുമായ ഭീമൻ ചുഴലി കൊടുങ്കാറ്റാണ് ഇത്. വ്യാഴത്തെ ദൂരദർശിനികളിൽ നിരീക്ഷിക്കാൻ തുടങ്ങിയ 1831 മുതലേ അത് അവിടെയുള്ളതായി അറിയാം, വേണമെങ്കിൽ 1665 മുതൽക്കേ അറിയാമെന്നും കണക്കിലെടുക്കാം. ഇത് ആ ഗ്രഹത്തിന്റെ സ്ഥിരമായ ഒരു സവിശേഷതയാണെന്നാണ് ഗണിത മാതൃകകൾ കാണിക്കുന്നത്. ഭൂമിയിൽ നിന്ന് നിരീക്ഷിക്കുന്ന 12 സെന്റീമീറ്ററോ അതിൽ കൂടുതലോ അപേർച്വർ ഉള്ള ദൂരദർശിനികളിൽ നിന്ന് പോലും ഇതിനെ കാണാൻ സാധിക്കും.
വാതഭീമന്മാരുടെ പ്രക്ഷുബ്ധമായ അന്തരീക്ഷങ്ങളിൽ ഇത്തരം കൊടുങ്കാറ്റുകൾ സാധാരണമാണ്‌. വ്യാഴത്തിൽ തന്നെ മറ്റ് വെള്ള ഓവലുകളും തവിട്ട് ഓവലുകളും ഉണ്ട്, മിക്കവയ്ക്കും പേര്‌ നൽകപ്പെട്ടിട്ടില്ല. വെള്ള ഓവലുകളുടെ മുകൾ അന്തരീക്ഷത്തിലെ താരതമ്യേന തണുത്ത മേഘങ്ങളാണുള്ളത്. കൂടുതൽ ഉഷ്ണമുള്ളതും സാധാരണ മേഘവിതാനത്തിൽ ഉള്ളതുമാണ്‌ തവിട്ട് ഓവലുകൾ. ഏതാനും മണിക്കൂറുകൾ മുതൽ നൂറ്റാണ്ടുകൾ വരെ നീണ്ടുനിൽക്കുന്ന കൊടുങ്കാറ്റുകൾ ഇവയുടെ കൂട്ടത്തിലുണ്ട്.
ചുറ്റിലുമുള്ള അന്തരീക്ഷത്തിനെ അപേക്ഷിച്ച് ചിലപ്പോൾ ദ്രുതമായും ചിലപ്പോൾ മന്ദമായും കറങ്ങുന്ന ആ പൊട്ട് വോയേജർ കൊടുങ്കാറ്റാണെന്ന് തെളിയിക്കുന്നതിന്‌ മുൻപ് തന്നെ ഉപരിതലത്തിന്‌ കീഴെയുള്ള എന്തിന്റേയെങ്കിലും ഫലമായുണ്ടാകുന്നതല്ല അതെന്ന് ഉറപ്പായിരുന്നു. രേഖപ്പെടുത്തപ്പെട്ട രേഖകളിൽ ആ പൊട്ട് ഗ്രഹത്തിനു ചുറ്റും ഏതാനും തവണ വലംവെക്കുന്നതായുള്ള വിവരണങ്ങളുണ്ട്.
2000 ൽ ഗ്രഹത്തിന്റെ ദക്ഷിണാർദ്ധ ഭാഗത്ത് ഭീമൻ ചുവന്ന പൊട്ടിന്‌ സമാനമായ എന്നാൽ വലിപ്പത്തിൽ കുറവുള്ള ഒന്ന് രൂപപ്പെട്ടിട്ടുണ്ട്. ഏതാനും ചെറിയ വെള്ള ഓവലുകൾ കൂടിച്ചേർന്ന് ഒന്നായിത്തീർന്ന് രൂപപ്പെട്ടതായിരുന്നു അത്, ആ വെള്ള ഓവലുകളിൽ മൂന്നെണ്ണം 1938 മുതൽ നീരീക്ഷപ്പെട്ടവയായിരുന്നു. കൂടിച്ചേർന്നുണ്ടായ രൂപത്തിന്റെ ഗാഢത വർദ്ധിക്കുകയും നിറം വെള്ളയിൽ നിന്ന് ചുവപ്പിലേക്ക് മാറുകയും ചെയ്തിട്ടുണ്ട്.
ഗ്രഹവളയങ്ങൾ
വ്യാഴത്തിന്റെ വളയങ്ങൾ

മൂന്ന് ഭാഗങ്ങളായുള്ള മങ്ങിയ വളയവ്യൂഹങ്ങൾ വ്യാഴത്തിനുണ്ട്: ഹാലോ എന്നറിയപ്പെടുന്ന ഉൾ ഭാഗത്തുള്ള ടോറസ് രൂപം, താരതമ്യേന തിളക്കമുള്ള പ്രധാന വളയം, പുറമേയുള്ള നേരിയ വളയം എന്നിവയാണവ. ശനിയുടെ വളയങ്ങൾ ഹിമ പരലുകളാൽ ഉള്ളതാണെങ്കിൽ വ്യാഴത്തിന്റേത് ധൂളികൾക്കൊണ്ടുള്ളതാണ്‌. ഉപഗ്രഹങ്ങളായ അഡ്രാസ്റ്റെ, മെയ്റ്റീസ് എന്നിവയിൽ നിന്നും ഉൽസർജ്ജിച്ച് പുറത്തുവരുന്ന പദാർത്ഥങ്ങളിൽ നിന്നും രൂപപ്പെട്ടതാകാം പ്രധാന വളയം. സാധാരണഗതിയിൽ ഉപഗ്രഹങ്ങളിൽ തന്നെ തിരിച്ചുപതിക്കേണ്ട പദാർത്ഥങ്ങളെ വ്യാഴം അതിന്റെ ശക്തമായ ഗുരുത്വബലം വഴി അതിലേക്കടുപ്പിക്കുന്നു. ഇത്തരം പദാർത്ഥങ്ങൾ വ്യാഴത്തിന്റെ നേരേ പതിക്കുകയും മറ്റ് കൂട്ടിയിടികൾ മൂലം കൂടുതൽ പദാർത്ഥങ്ങൾ അവയോട് ചേരുകയും ചെയ്യുന്നു. ഇതേ രീതിയിൽ ഉപഗ്രഹങ്ങളായ ഥേബെയും (Thebe), അമൽഥെയും (Amalthea) രണ്ട് വ്യത്യസ്തമായ മങ്ങിയ വളയങ്ങൾ സൃഷ്ടിച്ചിട്ടുണ്ട്. അമർഥെയുടെ പരിക്രമണപാതയിലൂടെ പാറകളടങ്ങിയ ഒരു വളയമുണ്ടെന്നതിന്‌ തെളിവുകൾ ലഭിച്ചിട്ടുണ്ട്, ഉപഗ്രഹത്തിൽ കൂട്ടിയിടികൾ ഫലമായുണ്ടായ അവശിഷ്ടങ്ങളായിരിക്കാം ആ വളയത്തിൽ എന്ന് കരുതപ്പെടുന്നു.
വ്യാഴത്തിന്റെ കാന്തമണ്ഡലം
ഭൂമിയുടെ കാന്തമണ്ഡലത്തിന്റെ 14 മടങ്ങ് ശക്തിയുള്ളതാണ്‌ വ്യാഴത്തിന്റെ വളരെ വ്യാപ്തിയുള്ള കാന്തിക മണ്ഡലം, മധ്യരേഖാഭാഗത്ത് 4.2 ഗോസ് മുതൽ ധ്രുവങ്ങളിൽ 10-14 ഗോസ് വരെയാണ്‌ അതിലെ കാന്തികക്ഷേത്രത്തിന്റെ ശക്തി, അതു കാരണം സൂര്യനിലെ സൗരകളങ്കങ്ങളിലുള്ളവ കഴിഞ്ഞാ സൗരയൂഥത്തിലെ ശക്തിയേറിയതാണിത്. ലോഹ ഹൈഡ്രജൻ കാമ്പിൽ സംഭവിക്കുന്ന ചാലക പദാർത്ഥങ്ങളുടെ ചുഴി ചലനത്തോടെയുള്ള പ്രവാഹങ്ങളുടെ ഫലമായാണ്‌ ഈ കാന്തിക ക്ഷേത്രം സൃഷ്ടിക്കപ്പെടുന്നതെന്ന് കരുതുന്നു. ഈ കാന്തികക്ഷേത്രം സൗരക്കാറ്റിലെ അയോണീകരിക്കപ്പെട്ട കണങ്ങളെ പിടിച്ചെടുക്കുകയും ഗ്രഹത്തിനു ചുറ്റും അത്യധികം ഊർജ്ജമുള്ള കാന്തിക ക്ഷേത്രത്തോടെയുള്ള കാന്തമണ്ഡലം രൂപപ്പെടുത്തുകയും ചെയ്യുന്നു. ഉപഗ്രഹമായ അയോയിലെ അഗ്നിപർവ്വത പ്രവർത്തന ഫലമായുണ്ടാകുന്ന ടോറസ് ആകൃതിയിലുള്ള സൾഫർ ഡയോക്സൈഡ് വാതക മേഘത്തെ പ്ലാസ്മ പാളിയിലെ ഇലക്ട്രോണുകൾ അയോണീകരിക്കുന്നു. വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിൽ നിന്നുള്ള ഹൈഡ്രജൻ കണങ്ങളും കാന്തമണ്ഡലത്തിൽ പെട്ടുപോകുന്നു. കാന്തമണ്ഡലത്തിനുള്ളിലെ ഇലക്ട്രോണുകൾ 0.6-30MHz ആവൃത്തിയോടെയുള്ള ശക്തമായ റേഡിയോ തരംഗങ്ങൾ സൃഷ്ടിക്കുകയും ചെയ്യുന്നുണ്ട്.
ഗ്രഹത്തിൽ നിന്നും ഏതാണ്ട് 75 വ്യാഴ വ്യാസാർദ്ധം അകലെ കാന്തമണ്ഡലവും സൗരവാതവും തമ്മിലുള്ള സംഘട്ടനം നൗകാഗ്രാഘാതം (bow shock) സൃഷ്ടിക്കുന്നു. കാന്തമണ്ഡലത്തിനു ചുറ്റുമായുള്ള കാന്തിക ഉറയുടെ (magnetosheath) അന്തർവശത്ത് കാന്തികസീമ (magnetopause) സ്ഥിതി ചെയ്യുന്നു, ഈ ഭാഗത്തുവച്ചാണ്‌ കാന്തിക മണ്ഡലം ദുർബലവും ക്രമരഹിതവുമാകുന്നത്. ഈ മേഖലയിൽ സൗരവാതങ്ങൾ പ്രവർത്തിക്കുകയും കാന്തമണ്ഡലത്തെ സൂര്യന്റെ എതിർ വശത്തേക്ക് വലിച്ചു നീട്ടിക്കൊണ്ടൂപോകുകയും ചെയ്യുന്നു. ഈ വലിച്ചുനീട്ടൽ ഏതാണ്ട് ശനിയുടെ പരിക്രമണപഥം വരെയെത്തുന്നുണ്ട്. വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങളിൽ വലിപ്പമേറിയ ഉപഗ്രഹങ്ങളിൽ നാലെണ്ണവും കാന്തികമണ്ഡലത്തിനകത്താണ്‌ സ്ഥിതിചെയ്യുന്നത്, അതുകൊണ്ട് തന്നെ അവയെ കാന്തമണ്ഡലം സൗരക്കാറ്റിൽ നിന്നും സംരക്ഷിക്കുന്നുണ്ട്.
വ്യാഴത്തിലെ ധ്രുവദീപ്തി. വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങളായ അയോ (ഇടത്ത്), ഗാനിമീഡ് (താഴെ), യൂറോപ്പ എന്നിവയുമായി കാന്തിക ബലരേഖാ നാളങ്ങൾ ബന്ധപ്പെടുമ്പോൾ ഉണ്ടാകുന്നവയാണ് തെളിഞ്ഞ നിറത്തിൽ കാണപ്പെടുന്ന മൂന്ന് പൊട്ടുകൾ. കൂടാതെ പ്രധാന ഓവൽ ഏതാണ്ട് വൃത്താകാരത്തിൽ തെളിഞ്ഞും, മങ്ങിയ ധ്രുവദീപതിയും കാണാൻ കഴിയും.
വ്യാഴത്തിന്റെ ധ്രുവമേഖലയിൽ നിന്നുള്ള തീവ്രമായ റേഡിയോ തരംഗങ്ങൾക്ക് കാരണം വ്യാഴത്തിന്റെ കാന്തമണ്ഡലമാണ്. ഉപഗ്രഹമായ അയോ യിലെ അഗ്നിപർവ്വത പ്രവർത്തനങ്ങൾ പുറത്ത് വിടുന്ന വാതകങ്ങൾ വ്യാഴത്തിനു ചുറ്റും ടോറസ് രൂപത്തിൽ ആയിത്തീരുന്നു. ടോറസ് രൂപത്തിനകത്ത് കൂടെ അയോ സഞ്ചരിച്ചുകൊണ്ടിരിക്കുമ്പോഴുള്ള പ്രതിപ്രവർത്തനങ്ങൾ അയോണീകരിക്കപ്പെട്ട പദാർത്ഥങ്ങളെ വ്യാഴത്തിന്റെ ധ്രുവ ഭാഗങ്ങളിലേക്ക് വഹിച്ചുകൊണ്ടു പോകുന്ന ആൽഫ്വെൻ തരംഗങ്ങൾ ഉൽപാദിപ്പിക്കുകയും ചെയ്യുന്നു. അതിൻഫലമായി സൈക്ലോട്രോൺ (cyclotron) മെയ്സർ മെക്കാനിസം (maser mechanism) വഴി റേഡിയോ തരംഗങ്ങൾ ഉൽപാദിപ്പിക്കപ്പെടുകയും, അവ സ്തൂപികാകൃതിയുടെ ഉപരിതലത്തിലൂടെ പ്രക്ഷേപണം ചെയ്യപ്പെടുകയും ചെയ്യുന്നു. ഭൂമി ഈ സ്തൂപികയെ മറികടന്ന് സഞ്ചരിക്കുന്ന വേളയിൽ വ്യാഴത്തിൽ നിന്നുള്ള റേഡിയോ വികിരണങ്ങൾ സൂര്യനിൽ നിന്നുള്ള റേഡിയോ വികിരണത്തേക്കാൾ കൂടുതലായിരിക്കും.
പരിക്രമണവും ഭ്രമണവും
വ്യാഴം മാത്രമാണ് സൂര്യനുമായുള്ള പിണ്ഡകേന്ദ്രം സൗരോപരിതലത്തിന് പുറത്തുള്ള (ദൂരം സൗരവ്യാസാർദ്ധത്തിന്റെ 7% മാത്രമാണെങ്കിലും) ഏക ഗ്രഹം. വ്യാഴത്തിനും സൂര്യനും ഇടയിലുള്ള ശരാശരി അകലം 77.8 കോടി കിലോമീറ്ററാണ് (ഭൂമിയും സൂര്യനുമായുള്ള ശരാശരി അകലത്തിന്റെ 5.2 മടങ്ങ്, അതായത് 5.2 ആസ്ട്രോണമിക്കൽ യൂണിറ്റ്). ഒരു പരിക്രമണം പൂർത്തിയാക്കാൻ വ്യാഴം 11.86 വർഷങ്ങൾ എടുക്കുന്നു. ഇത് ശനിയുടെ പരിക്രമണ കാലത്തിന്റെ അഞ്ചിൽ രണ്ടാണ്, അതുപ്രകാരം സൗരയൂഥത്തിൽ വലിപ്പമേറിയ രണ്ട് ഗ്രഹങ്ങൾ തമ്മിലുള്ള പരിക്രമണ അനുരണനം (orbital resonance) 5:2 ആണ്. ഭൂമിയുടെ പരിക്രമണ തലത്തെ കണക്കിലെടുക്കുമ്പോൾ വ്യാഴത്തിന്റെ പരിക്രമണം തലത്തിന് 1.31° ചെരിവുണ്ട്. പരിക്രമണപഥത്തിന്റെ ഉത്കേന്ദ്രത 0.048 ആയതിനാൽ അപസൗരത്തിൽ നിന്നും ഉപസൗരത്തിലേക്ക് നീങ്ങുന്നതിനിടയിൽ സൂര്യനുമായുള്ള അകലത്തിൽ 7.5 കോടിയുടെ വ്യത്യാസം വരുന്നു, മറ്റൊരു തരത്തിൽ പറഞ്ഞാൽ സൂര്യനോട് ഏറ്റവും അടുത്തുവരുന്നതും ഏറ്റവും അകലെ നിൽക്കുന്നതും തമ്മിലുള്ള ദൂരങ്ങളുടെ വ്യത്യാസം അത്രയ്ക്കുണ്ട്.
വ്യാഴത്തിന്റെ അച്ചുതണ്ടിന്റെ ചെരിവ് 3.13° മാത്രമാണ്. അതുകൊണ്ടുതന്നെ ഭൂമിയിലും ചൊവ്വയിലും ഉണ്ടാകുന്ന തരത്തിലുള്ള വലിയ ഋതുമാറ്റങ്ങൾ വ്യാഴത്തിൽ സംഭവിക്കുന്നില്ല.
സൗരയൂഥ ഗ്രഹങ്ങളിൽ ഏറ്റവും വേഗത്തിൽ ഭ്രമണം ചെയ്യുന്നത് വ്യാഴമാണ്, പത്ത് മണിക്കൂറിനുള്ളിൽ വ്യാഴം അതിന്റെ ഒരു ഭ്രമണം പൂർത്തിയാക്കുന്നു; അതുകാരണം ഭൂമിയിൽ നിന്നുള്ള സാധാരണ ദുരദർശിനികളിൽ കൂടി വീക്ഷിക്കുമ്പോൾ തന്നെ കാണപ്പെടുന്ന തരത്തിൽ മധ്യരേഖാ ഭാഗം തള്ളി നിൽക്കുന്ന രൂപമാണ് ഗ്രഹത്തിനുള്ളത്.
ഗവേഷണവും പര്യവേഷണവും
ബി.സി. രണ്ടാം സഹസ്രാബ്ദം മുൻപുള്ള ബാബിലോണിയൻ ജ്യോതിശാസ്ത്രജർ വ്യാഴത്തെ നിരീക്ഷിച്ചതായി രേഖപ്പെടുത്തിയിട്ടുണ്ട്. ബി.സി. 362 ൽ ചൈനീസ് വാനനിരീക്ഷകനായ ഗാങ് ദെ (Gan De) നഗ്നനേത്രങ്ങൾ കൊണ്ട് വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങളിലൊന്നിനെ നിരീക്ഷിച്ചിട്ടുണ്ടെന്ന് ചൈനീസ് ജ്യോതിശാസ്ത്ര ചരിത്രകാരനായ സി സീസോങ് ( Xi Zezong) അവകാശപ്പെടുന്നു. അത് ശരിയാണെങ്കിൽ ഗലീലിയോയുടെ കണ്ടുപിടിത്തത്തെ ഏതാണ്ട് രണ്ടായിരം വർഷം മുൻപ് തന്നെ മറികടന്നിരുന്നു എന്ന് വരും.
ഭൗമോപരിതല ദൂരദർശിനികൾ വഴിയുള്ള നിരീക്ഷണം
1610 ൽ ഗലീലിയോ ഗലീലി വ്യാഴത്തിന്റെ നാല്‌ വലിയ ഉപഗ്രഹങ്ങളായ അയോ, യൂറോപ്പ, ഗാനിമീഡ്, കാലിസ്റ്റൊ എന്നിവയെ ദൂരദർശിനിയിൽ കൂടി നിരീക്ഷിക്കുകയുണ്ടായി, ഈ നാല്‌ ഉപഗ്രഹങ്ങളെ ഗലീലിയൻ ഉപഗ്രഹങ്ങൾ എന്ന് വിളിക്കാറുണ്ട്, ഭൂമിയല്ലാത്ത മറ്റൊരു ഗ്രഹത്തിന്റെ ഉപഗ്രഹത്തെ ആദ്യമായി ദൂരദർശിനിയിൽ കൂടി നിരീക്ഷിച്ച സംഭവമായിരുന്നു അത്. ഭൂമിയെ കേന്ദ്രമാക്കിയല്ല ഖഗോളങ്ങൾ സഞ്ചരിക്കുന്നത് എന്നും ഗലീലിയോ കണ്ടെത്തി. കോപ്പർനിക്കസിന്റെ സൗരകേന്ദ്ര ഗ്രഹവ്യവസ്ഥ വിഭാവനത്തെ സാധൂകരിക്കുന്ന കണ്ടുപിടിത്തമായിരുന്നു ഇത്; കോപ്പർനിക്കസിന്റെ കണ്ടുപിടൂത്തങ്ങളെ അനുകൂലിച്ചുകൊണ്ടുള്ള ഗലീലിയോയുടെ ഈ വാദങ്ങൾ അദ്ദേഹത്തിനെ മതദ്രോഹ വിചാരണ നേരിടുന്നതിലേക്കെത്തിക്കുകയും ചെയ്തു.
1660 കളിൽ പുതിയ തരം ദൂരദർശിനിയുപയോഗിച്ച് കാസ്സിനി വ്യാഴത്തിൽ പൊട്ടുകളും വർണ്ണനിറത്തിലുള്ള നാടകളും കണ്ടെത്തുകയും ഗ്രഹത്തിന്റെ ധ്രുവഭാഗത്തം അല്പം പരന്ന നിലയിലാണെന്ന് നിരീക്ഷിക്കുകയും ചെയ്തു. ഗ്രഹത്തിന്റെ ഭ്രമണ കാലം ഏതാണ്ട് കണക്കാക്കുവാനും അദ്ദേഹത്തിന്‌ കഴിഞ്ഞിരുന്നു. വ്യാഴത്തിന്റെ അന്തരീക്ഷം ഡിഫ്രൻഷ്യൽ ഭ്രമണത്തിനു വിധേയമാകുന്നുണ്ടെന്നും 1690 ൽ കാസ്സിനി നിരീക്ഷിക്കുകയുണ്ടായി.
വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിന്റെ വിശദാംശങ്ങളുൾക്കൊള്ളുന്ന ഒരു ഫാൾസ് കളർ ചിത്രം, വോയേജർ 1 പകർത്തിയത്, ചുവന്ന ഭീമൻ പൊട്ട് ഒരു വെള്ള ഓവലിനേയും കടന്ന് സഞ്ചരിക്കുന്നത് കാണിക്കുന്നു.
വ്യാഴത്തിന്റെ ദക്ഷിണാർദ്ധഗോളത്തിലെ പ്രധാന ശ്രദ്ധാകേന്ദ്രമായ ഭീമൻ ചുവന്ന പൊട്ട് 1664 ൽ റോബർട്ട് ഹൂക്കും (Robert Hooke) 1665 ൽ ഗിയോവന്നി കാസ്സിനിയും നിരീക്ഷിച്ചിരുന്നിരിക്കാം, ഇവ തർക്കപൂർണ്ണമാണമായ കാര്യമാണ്‌. 1831ൽ ജർമ്മൻ ജ്യോതിശാസ്ത്രജ്ഞായ ഹെയ്ൻറിച്ച് ഷ്വാബെ (Heinrich Schwabe) ആണ്‌ ചുവന്ന ഭീമൻ പൊട്ടിനെ വിവരിക്കുന്ന ആദ്യത്തെ രേഖാചിത്രങ്ങൾ തയ്യാറാക്കിയിട്ടുള്ളത്.
1665 നും 1708 നും ഇടയിൽ നിരവധി തവണ ചുവന്ന പൊട്ട് കാഴ്ചയിൽ നിന്നും മറഞ്ഞതായും 1878 വ്യക്തമായി കാണപ്പെടുകയും ചെയ്തതായും രേഖപ്പെടുത്തപ്പെട്ടിട്ടുണ്ട്. 1883 ലും ഇരുപതാം നൂറ്റാണ്ടിന്റെ തുടക്കത്തിലും അത് മങ്ങാൻ തുടങ്ങിയതായി രേഖപ്പെടുത്തിയിട്ടുമുണ്ട്.
ഗിയോവന്നി ബൊറേലി, ഗിയോവന്നി കാസ്സിനി എന്നീ രണ്ടുപേരും ചേർന്ന് വ്യഴത്തിന്റെ ഉപഗ്രഹങ്ങളുടെ ചലനങ്ങളെ സംബന്ധിച്ചുള്ള പട്ടികകൾ തയ്യാറാക്കി, അതുവഴി എപ്പോഴൊക്കെ ഉപഗ്രഹങ്ങൾ ഗ്രഹത്തിന്റെ മുന്നിലൂടെയും പിന്നിലൂടെയും കടന്നുപോകും എന്ന് പ്രവചിക്കാനാകുമായിരുന്നു. എങ്കിലും 1670 കളോടെ വ്യഴം സൂര്യന്റെ എതിർ വശത്തായിരിക്കുന്ന വേളയിൽ ഈ പ്രവചനങ്ങൾ 17 മിനുട്ട് വൈകിയേ നടക്കുന്നുള്ളൂ എന്ന് കണ്ടെത്തുകയുണ്ടായി. നമ്മൾ കാണുന്നത് അത് സംഭവിക്കുന്നതിന്റെ അതേസമയത്തല്ല എന്ന് ഒൾ റോമർ (Ole Rømer) സർത്ഥിച്ചു (ഇത് കാസ്സിനി ആദ്യം നിരാകരിച്ചിരുന്നു[17]), സമയത്തിലെ ഈ വ്യത്യാസം പ്രാകശത്തിന്റെ പ്രവേഗം കണക്കാക്കുന്നതിന്‌ അദ്ദേഹം ഉപയോഗിക്കുകയും ചെയ്തു.
1892 ൽ കാലിഫോർണിയയിലെ ലിക്ക് ഒബ്സർവേറ്ററിയിൽ വച്ച് ഇ.ഇ. ബർണാഡ് 36 ഇഞ്ച് (910 മില്ലീമീറ്റർ) അപവർത്തകമുപയോഗിച്ച് വ്യാഴത്തിന്റെ അഞ്ചാമത്തെ ഉപഗ്രഹത്തെ നിരീക്ഷിച്ചു. വളരെ ചെറിയ വസ്തുവിന്റെ ഈ കണ്ടുപിടിത്തം അദ്ദേഹത്തെ പെട്ടെന്ന് പ്രശസ്തനാക്കുകായും ചെയ്തു. ആ ഉപഗ്രഹത്തെ പിന്നീട് അമാൽഥെ (Amalthea) എന്ന് നാമകരണം ചെയ്യപ്പെട്ടു. ഗ്രഹങ്ങളുടെ ഉപഗ്രഹങ്ങളിൽ നേത്രനിരീക്ഷണം വഴി കണ്ടെത്തിയ അവസാനത്തേതായിരുന്നു അത്. 1979 ൽ വോയേജർ 1 സമീപത്തുകൂടി സഞ്ചരിക്കുന്നതിനു മുൻപ് തന്നെ വേറെ എട്ട് ഉപഗ്രഹങ്ങളെ കൂടി കണ്ടെത്തിയിരുന്നു.
വ്യാഴത്തിന്റെ വർണ്ണരാജിയിലെ അമോണിയയുടേയും മീഥേയ്നിനിന്റേയും അവശോഷണ രേഖകൾ 1932 ൽ റൂപെർട്ട് വിൽഡ്റ്റ് കണ്ടെത്തുകയുണ്ടായി.
1938 ലാണ് ദീർഘകാലം നിലനിന്ന മൂന്ന് വെള്ള ഓവലുകൾ കണ്ടെത്തുന്നത്. ഏതാനും ദശാബ്ദങ്ങളോളം അവ അന്തരീക്ഷത്തിൽ വെവ്വേറെ രൂപങ്ങളായി നിലനിന്നു, പർസ്പരം കൂടിച്ചേരാതെ അടുത്തും അകന്നും അവ നീങ്ങി. 1998 ൽ അവയിലെ രണ്ട് ഓവലുകൾ കൂടിച്ചേരുകയും 2000 ൽ മൂന്നാമതും കൂടി ചേരുകയും ഉണ്ടായി, പിന്നീടത് BA എന്ന് വിളിക്കപ്പെട്ടു.
റേഡിയോ ദൂരദർശിനി നിരീക്ഷണം
1955 ൽ ബെർണാഡ് ബുർക്കും കെന്നെത്ത് ഫ്രാങ്ക്ലിനും വ്യാഴത്തിൽ നിന്നും വരുന്ന് 22.2 മെഗാ ഹെർട്സ് ആവൃത്തിയിലുള്ള റേഡിയോ സിഗ്നൽ കൂട്ടങ്ങൾ കണ്ടെത്തി. ഈ സിഗ്നൽ കൂട്ടങ്ങളുടെ ഇടവേള ഏതാണ്ട് ഗ്രഹത്തിന്റെ ഭ്രമണത്തിനു തുല്യമായിരുന്നു, ഈ വിവരം ഭ്രമണ നിരക്ക് കൂടുതൽ കൃത്യതയോടെ കണക്കാക്കാൻ അവർ ഉപയോഗിക്കുകയും ചെയ്തു. സിഗ്നൽ കൂട്ടങ്ങൾ രണ്ട് തരത്തിലുള്ളവയായിരുന്നു: ഏതാനും സെക്കന്റുകൾ നീണ്ടു നിൽക്കുന്ന ദൈർഘ്യമുള്ളവയും സെക്കന്റിന്റെ നൂറിലൊന്നിൽ കുറവായ ദൈർഘ്യം മാത്രമുള്ളവയും.
ഡെക്കാമെട്രിക്ക് റേഡിയോ സിഗ്നൽ കൂട്ടങ്ങൾ (പത്തിനും നൂറിനും ഇടയിൽ മീറ്ററുകൾ തരംഗദൈർഘ്യമുള്ളവ). വ്യാഴത്തിന്റെ ഭ്രമണത്തിനനുസരിച്ച് ഇവ മാറുന്നു, വ്യാഴത്തിന്റെ കാന്തികക്ഷേത്രവുമായുള്ള അയോയുടെ പ്രതിപ്രവർത്തനങ്ങൾ ഇവയിൽ സ്വാധീനം ചെലുത്തുകയും ചെയ്യുന്നു.
ഡെസിമെട്രിക്ക് റേഡിയോ ഉൽസർജ്ജനം (സെന്റീമീറ്ററുകൾ തരംഗദൈർഘ്യമുള്ളവ), 1959 ൽ ഫ്രാങ്ക് ഡ്രെയ്ക്കും ഹെയ്ൻ ഹ്വാട്ടമും ആണ് ഇവ ആദ്യമായി കണ്ടെത്തിയത്. വ്യാഴത്തിന്റെ മധ്യരേഖയ്ക്കു മുകളിലുള്ള ടോറസ് രൂപത്തിലുള്ള വളയമാണ് ഇവയുടെ ഉൽഭവസ്ഥാനം. വ്യാഴത്തിന്റെ കാന്തികക്ഷേത്രത്തിൽ ത്വരണം ചെയ്യപ്പെടുന്ന ഇലക്ട്രോണുകളിൽ നിന്നും വരുന്ന സൈക്ലോട്രോൺ വികിരണമാണ് ഇവയ്ക്ക് കാരണമാകുന്നത്.
ബഹിരാകാശ പേടകങ്ങൾ വഴിയുള്ള പര്യവേഷണങ്ങൾ
1973 മുതൽ ഏതാനും വിദുരനിയന്ത്രിത പേടകങ്ങൾ വ്യാഴത്തെ സന്ദർശിച്ചിട്ടുണ്ട്, സൗരയൂഥത്തിലെ ഏറ്റവും വലിയ ഈ ഗ്രഹത്തിനു സമീപം ചെന്ന് അതിന്റെ പ്രതിഭാസങ്ങളേയും ഘടനയേയും പറ്റിയുള്ള വിവരങ്ങൾ അയച്ചുതന്ന പയനീയർ 10 ആണ് അവയിൽ പ്രധാനപ്പെട്ടത്. സൗരയൂഥത്തിലെ ഗ്രഹങ്ങളെ സന്ദർശിക്കുന്നതിൽ നിർണ്ണായകം ഉപയോഗിക്കപ്പെടുന്ന ഊർജ്ജമാണ്, പേടകത്തിന്റെ പ്രവേഗത്തിലുണ്ടാകുന്ന മൊത്തം മാറ്റങ്ങളെയാണ് ഈ ഊർജ്ജം കൊണ്ടുദ്ദേശിക്കുന്നത്, അത് ഡെൽറ്റാ-v എന്ന് വിളിക്കപ്പെടുന്നു. 9.2 കിലോമീറ്റർ/സെക്കന്റ് ആണ് ഭൂമിയിൽ നിന്നും വ്യാഴത്തി ലെത്താനുള്ള ഡെൽറ്റാ-v, ഇത് ഭൂമിക്കു ചുറ്റുമുള്ള താഴ്ന്ന ഭ്രമണപഥത്തിലെത്താനുള്ള 9.7 കിലോമീറ്റർ/സെക്കന്റ് ഡെൽറ്റാ-v യുമായി ഇത് താരതമ്യപ്പെടുത്താവുന്നതേയുള്ളൂ. കൂടാതെ ഗ്രഹങ്ങൾക്കിടയിൽ സഞ്ചരിക്കുന്നതിന് അവയുടെ ഗുരുത്വബലങ്ങൾകൂടി പ്രയോജനപ്പെടുത്തി ആവശ്യമുള്ള ഊർജ്ജത്തിൽ കുറവു വരുത്താൻ സാധിക്കും, എന്നാലും അതുവഴി കൂടുതൽ സമയമെടുക്കും എന്ന ന്യൂനതയുണ്ട്.
ഗലീലിയോ സംരംഭം
ഇതു വരെ അയച്ച പേടകങ്ങളിൽ വ്യാഴത്തെ പരിക്രമണം ചെയ്തത് ഗലീലിയോ ഓർബിറ്റർ മാത്രമാണ്, 1995 ഡിസംബർ 7 നാണ് അത് പരിക്രമണപഥത്തിൽ പ്രവേശിച്ചത്. ഏഴ് വർഷത്തിൽ കൂടുതൽ അത് ഗ്രഹത്തെ വലംവച്ചു, അതിനിടയിൽ ഗലീലിയൻ ഉപഗ്രഹങ്ങൾ, അമാൽഥെ എന്നിവയുമായി നിരവധി സമീപ പറക്കലുകൾ നടക്കുകയുമുണ്ടായി. 1994 ൽ വ്യഴത്തോടടുക്കുന്ന വേളയിൽ ഷുമാക്കർ ലെവി 9 വാൽനക്ഷത്രം ഗ്രഹത്തിൽ വന്നിടിക്കുന്ന കാഴ്ച്ചയ്ക്കും പേടകം സാക്ഷിയായി, ആ അപൂർവ്വകാഴ്ചയുടെ ദൃശ്യങ്ങളും പേടകം നൽകിയിരുന്നു. ജൊവിയൻ വ്യൂഹത്തെപ്പറ്റി പേടകത്തിൽ നിന്നും വളരെ വിവരങ്ങൾ ലഭിച്ചിട്ടുണ്ടെങ്കിലും അതിന്റെ ഉന്നത ശേഷിയുള്ള റേഡിയോ പ്രക്ഷേപണ ആന്റിന സ്ഥാപിക്കുന്നതിലെ പിഴവ് പേടകം യഥാർത്ഥത്തിൽ ഉദ്ദേശിച്ച ശേഷിയിൽ പ്രവർത്തിക്കുന്നതിനെ ഇല്ലാതാക്കിയിരുന്നു.
1995 ജൂലൈയിൽ പേടകത്തിൽ നിന്നും ഒരു അന്തരീക്ഷപേടകം വിക്ഷേപിക്കപ്പെടുകയും ഡിസംബർ 7 ന് അന്തരീക്ഷപേടകം വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിൽ പ്രവേശിക്കുകയും ചെയ്തു. അന്തരീക്ഷത്തിൽ 150 കിലോമീറ്റർ താഴ്ചയിൽ സഞ്ചരിച്ച് 57.6 മിനുട്ട് നേരത്തേക്കുള്ള വിവരങ്ങൾ അത് ശേഖരിച്ചു, ശേഷം ഉയർന്ന മർദ്ദത്തിനു വിധേയമായി ഞെരിഞ്ഞമർന്ന് തകരുകയും ചെയ്തു ( ആ സമയം മർദ്ദം ഭൂമിയിലെ മർദ്ദത്തിന്റെ 22 മടങ്ങായിരുന്നു, താപനില 153 ഡിഗ്രി സെൽഷ്യസും). ശേഷം പേടകം ഉരുകുകയും ബാഷ്പീകരിക്കപ്പെടുകയും ചെയ്തിരിക്കാം. ജീവൻ നിലനിൽക്കാൻ സാധ്യതയുണ്ടെന്ന് അനുമാനിക്കപ്പെട്ട ഉപഗ്രഹമായ യൂറോപ്പയുമായുള്ള കൂട്ടിയിടി ഒഴിവാക്കാൻ മുൻകൂട്ടി തയ്യാറാക്കിയതുപ്രകാരം 2003 സെപ്റ്റംബർ 21-ന് ഗതി ഗ്രഹത്തിനു നേരെ തിരിച്ചുവിട്ട് 50 കിലീമീറ്റർ പ്രതി നിമിഷം സഞ്ചരിച്ചപ്പോൾ ഗലീലിയോ പേടകവും ഇതിനേക്കാൾ ദ്രുതഗതിയിലുള്ള തകരലിനു വിധേയമായി.
ഭാവി പേടകങ്ങളും റദ്ദാക്കിയ പദ്ധതികളും
വ്യാഴത്തെ ധ്രുവപരിക്രമണപഥത്തിലൂടെ സഞ്ചരിച്ച് വിശദമായി പഠിക്കുന്ന ഒരു സംരംഭത്തിന് നാസ പദ്ധതിയിട്ടിട്ടുണ്ട്. ജുനോ (Juno) എന്ന് പേരിട്ടിരിക്കുന്ന ഇത് 2011 ലാണ് വിക്ഷേപിക്കപ്പെടുക.
വ്യാഴത്തേയും അതിന്റെ ഉപഗ്രഹങ്ങളെയും പര്യവേഷണം ചെയ്യുന്നതിന് നാസയും യൂറോപ്യൻ ബഹിരാകാശ ഏജൻസിയും സംയുക്തമായി നടത്താനിരിക്കുന്ന സംരംഭമാണ് യൂറോപ്പ ജൂപ്പിറ്റർ സിസ്റ്റം മിഷൻ (Europa Jupiter System Mission, EJSM). ടൈറ്റൻ സാറ്റൺ സിസ്റ്റം മിഷൻ പദ്ധതിയേക്കാൾ മുൻഗണന ഇതിന് നൽകുമെന്ന് 2009 ഫെബ്രുവരിയിൽ നാസയും യൂറോപ്യൻ ബഹിരാകാശ ഏജൻസിയും പ്രഖ്യാപിച്ചിട്ടുണ്ടായിരുന്നു. 2020 നോട് അടുത്തായിരിക്കും ഇതിന്റെ വിക്ഷേപണം നടക്കുക, നാസയുടെ വ്യഴ-യൂറോപ്പ ഓർബിറ്ററും യൂറോപ്യൻ ഏജൻസിയുടെ വ്യഴ-ഗാനിമീഡ് ഓർബിറ്ററും ഇതിലുൾപ്പെടുന്നു.
ഉപഗ്രഹങ്ങളായ യൂറോപ്പ, ഗാനിമീഡ്, കാലിസ്റ്റൊ തുടങ്ങിയ ഉപഗ്രഹങ്ങളുടെ ഉപോപരിതലങ്ങളിൽ ദ്രാവക സമുദ്രങ്ങൾ ഉണ്ടാകാൻ സാധ്യതയുള്ളതിനാൽ അവയെ കുറിച്ച് വിശദമായി പഠിക്കാൻ ഗവേഷകർക്ക് കൂടുതൽ താല്പര്യമുണ്ടെങ്കിലും സാമ്പത്തികമാണ് കാര്യങ്ങളെ വൈകിക്കുന്നത്. നാസയുടെ ജിമോ (JIMO, Jupiter Icy Moons Orbiter) 2005 ൽ റദ്ദാക്കിയിരുന്നു. യൂറോപ്യൻ ജോവിയൻ യൂറോപ്പ ഓർബിറ്ററിന്റെ സാധ്യാത പഠനവും നടന്നിട്ടുണ്ടായിരുന്നെങ്കിലും യൂറോപ്പ ജൂപ്പിറ്റർ സിസ്റ്റം മിഷന് വേണ്ടി അത് മാറ്റിവെയ്ക്കുകയായിരുന്നു.
ഉപഗ്രഹങ്ങൾ
അറിയപ്പെടുന്ന 79 ഉപഗ്രഹങ്ങൾ വ്യാഴത്തിനുണ്ട്. ഇതിൽ 61 എണ്ണവും 10 കിലോമീറ്ററിൽ താഴെ വ്യാസമുള്ളവയും 1975 ന് ശേഷം കണ്ടെത്തിയവയുമാണ്. വലിയ നാല് ഉപഗ്രഹങ്ങളായ അയോ, യൂറോപ്പ, ഗാനിമീഡ്, കാലിസ്റ്റൊ എന്നിവയെ ഗലീലിയൻ ഉപഗ്രഹങ്ങൾ എന്ന് വിളിക്കുന്നു.
ഗലീലിയൻ ഉപഗ്രഹങ്ങൾ
ഗലീലിയൻ ഉപഗ്രഹങ്ങൾ, വ്യാഴത്തിൽ നിന്നുള്ള ദുരത്തിന്റെ ക്രമത്തിൽ ഇടത്തുനിന്നും വലത്തോട്ട് കാണിച്ചിരിക്കുന്നു: അയോ, യൂറോപ്പ, ഗാനിമീഡ്, കാലിസ്റ്റൊ.
അയോ, യൂറോപ്പ, ഗാനിമീഡ്, എന്നിവയുടെ പരിക്രമണ പഥങ്ങൾ ലാപ്ലെയ്സ് റെസണൻസ് ക്രമത്തിലാണുള്ളത്; അയോ നാല് തവണ വ്യാഴത്തെ വലം വയ്ക്കുമ്പോൾ യൂറോപ്പ കൃത്യം രണ്ട് തവണയും ഗാനിമീഡ് കൃത്യം ഒരു തവണയും വലം വയ്ക്കുന്നു. ഒരോ തവണ വലം വയ്ക്കുമ്പോഴും ഇതിലെ ഒരോ ഉപഗ്രഹവും അതിന്റെ അയൽക്കാരനിൽ നിന്ന് ഒരു വലിവ് അനുഭവപ്പെടുന്നതിനാൽ പരിക്രമണപഥങ്ങളുടെ ഈ അനുരണനം അവയുടെ പരിക്രമണപഥങ്ങളെ ദീർഘവൃത്താകാരമുള്ളതാക്കാൻ പ്രേരിപ്പിക്കുന്നുണ്ട്. അതേസമയം വ്യാഴത്തിൽ നിന്നുള്ള വലിവു ബലം അവയേ കൂടുതൽ വൃത്താകാരമുള്ളതാക്കാനും ശ്രമിക്കുന്നു.
ഈ മൂന്ന് ഉപഗ്രഹങ്ങളുടെ പരിക്രമണപഥങ്ങളുടെ ഉത്കേന്ദ്രത അവയുടെ രൂപത്തിൽ ചെറിയ മാറ്റങ്ങൾ വരുത്തുന്നതിന് കാരണമാകുന്നുണ്ട്, വ്യാഴത്തോട് അടുക്കുമ്പോൾ ഉപഗ്രഹോപരിതലം പുറത്തേക്ക് അല്പം തള്ളപ്പെടുകയും വ്യാഴത്തിൽ നിന്ന് അകലുമ്പോൾ ഗോളാകൃതി പുനഃസ്ഥാപിതമാകുകയും ചെയ്യുന്നു. ഇങ്ങനെ വലിവുകൾ വഴി സൃഷ്ടിക്കപ്പെടുന്ന ഘർഷണം അവയുടെ ആന്തരീക ഭാഗങ്ങളെ ചൂടാക്കുന്നു. ഗ്രഹത്തോട് കൂടുതൽ അടുത്ത് നിൽക്കുന്നതുവഴി വലിവുബലങ്ങൾക്ക് കൂടുതൽ വിധേയമാകുന്ന അയോയിൽ ഇത് കൂടുതൽ പ്രകടമായി അസാധാരണ വിധത്തിൽ അഗ്നിപർവ്വത പ്രവർത്തങ്ങൾ നടക്കുന്നതായി കാണാം. ഭൂമിശാസ്ത്രപരമായി പ്രായം കുറഞ്ഞ യൂറോപ്പയുടെ ഉപരിതലത്തിൽ ഇത് കുറഞ്ഞ അളവിലാണ് കാണപ്പെടുന്നത്.
വൊയേജർ സംരംഭത്തിലെ കണ്ടെത്തലുകൾക്ക് മുൻപ് വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങളെ അവയുടെ പരിക്രമണത്തിലെ സമാനതകൾ കണക്കിലെടുത്ത് നാലായി തരംതിരിച്ചിരുന്നു. അതിനുശേഷം കൂറേയധികം ഉപഗ്രഹങ്ങളെ കണ്ടുപിടിച്ചത് ഈ വർഗ്ഗീകരണത്തെ കൂടുതൽ സങ്കീർണ്ണമാക്കുകയുണ്ടായി. നിലവിൽ പ്രധാനപ്പെട്ട ആറ് തരംതിരിവാണുള്ളത്.
എട്ട് ആന്തര നിയത ഉപഗ്രഹങ്ങളുടെ ഉപവർഗ്ഗമാണ് അടിസ്ഥാനപരമായ ഒന്ന്, വ്യാഴത്തിന്റെ മധ്യരേഖാ തലത്തിനോട് ചേർന്ന് ഏതാണ്ട് വൃത്തപാതയിലൂടെ പരിക്രമണം ചെയ്യുന്ന ഇവ വ്യാഴത്തിനോടൊപ്പം രൂപം കൊണ്ടവയാണെന്ന് വിശ്വസിക്കപ്പെടുന്നു. ചെരിഞ്ഞതും ദീർഘവൃത്തവുമായ പഥത്തിലൂടെ പരിക്രമണം ചെയ്യുന്നവയും ചെറുതും അനിയതവുമായവയാണ് ബാക്കിയുള്ള ഉപഗ്രഹങ്ങൾ, അവയുടെ എണ്ണം തിട്ടപ്പെടുത്തിയിട്ടില്ല, പിടിച്ചെടുക്കപ്പെട്ട ക്ഷുദ്രഗ്രഹങ്ങളോ ക്ഷുദ്രഗ്രഹ ഖണ്ഡങ്ങളോ ആണ് അവയെന്നാണ് അനുമാനം. ഒരേ വർഗ്ഗത്തിൽ പെട്ട അനിയത ഉപഗ്രഹങ്ങൾ ഏതാണ്ട് ഒരേ പരിക്രമണം സ്വഭവവിശേഷതകൾ പ്രകടിപ്പിക്കുന്നതിനാൽ അവയുടേത് ഒരേ ഉല്പത്തിയാണെന്ന് കരുതുന്നു, അല്ലെങ്കിൽ അവ വലിയ ഉപഗ്രഹമോ പിടിച്ചെടുക്കപ്പെട്ട വസ്തുവോ ഖണ്ഡങ്ങളായാതായിരിക്കാം
ഗലീലിയൻ ഉപഗ്രഹങ്ങൾ സൗരയൂഥത്തിലെ ഏറ്റവും വലിയ ഉപഗ്രഹങ്ങളുടെ കൂട്ടത്തിൽപ്പെടുന്നവയാണ് ഗലീലിയോ ഗലീലിയും, സിമോൺ മറിയസും ഒരേ സമയം കണ്ടെത്തിയ ഈ നാല് ഉപഗ്രഹങ്ങൾ. 400,000 കിലോമീറ്ററിനും 2,000,000 കിലോമീറ്ററിനും ഇടയിൽ വ്യാസാർത്തോടെയുള്ള പരിക്രമണ പഥത്തിൽ ഇവ വലംവയ്ക്കുന്നു.
തീമിസ്റ്റൊ ഈ ഗണത്തിലുള്ള ഒരേയൊരു ഉപഗ്രഹമാണിത്, ഗലീലിയൻ ഗണത്തിനും ഹിമാലിയ ഗണത്തിനും ഇടയിലെ പാതി അകലത്തിൽ പരിക്രമണം നടത്തുന്നു.
സൗരയൂഥത്തിൻ മേലുള്ള സ്വാധീനം
സൂര്യനോടൊപ്പം സൗരയൂഥത്തിന്റെ രൂപം നിർണ്ണയിക്കുന്നതിൽ വ്യാഴത്തിന്റെ ഗുരുത്വബലത്തിനും പങ്കുണ്ട്. സൗരയൂഥത്തിലെ ഭൂരിഭാഗം ഗ്രഹങ്ങളുടെയും പരിക്രമണ തലം സൗരമധ്യരേഖാ തലത്തേക്കാൾ വ്യാഴത്തിന്റെ പരിക്രമണ തലത്തിനോട് ചേർന്നാണ് നിലനിൽക്കുന്നത്, സൂര്യനോട് ചേർന്ന് കിടക്കുന്ന ബുധന്റെ പരിക്രമണം തലമാണ് സൗര മധ്യരേഖ തലത്തോട് ചെരിവിൽ കുറഞ്ഞതായി കാണുന്നത്. ഛിന്നഗ്രഹവളയത്തിലെ കിർക്ക്‌വുഡ് വിടവിനും സൗരയൂഥ ചരിത്രത്തിൽ നടന്നെന്നു കരുതുന്ന അന്തർ സൗരയൂഥത്തിലെ അവസാന വൻ കൂട്ടിയിടിക്കും (Late Heavy Bombardment) കാരണക്കാരൻ വ്യഴമാണെന്ന് കരുതുന്നു.
രേഖാചിത്രത്തിൽ വ്യാഴത്തിന്റെ പരിക്രമണപഥത്തിലുള്ള ട്രോജൻ ഛിന്നഗ്രഹങ്ങളെ കാണാം. പ്രധാന ഛിന്നഗ്രഹ വലയവും കാണിച്ചിരിക്കുന്നു.
സ്വന്തം ഉപഗ്രഹങ്ങളെ കൂടാതെ പരിക്രമണപഥത്തിൽ ഗ്രഹത്തിനു മുൻപും ശേഷവുമുള്ള ലഗ്രാൻഗിയൻ ബിന്ദുക്കളിലുള്ള ഛിന്നഗ്രഹങ്ങളേയും അവിടെ നിർത്തുന്നതിലും വ്യാഴത്തിന്റെ ഗുരുത്വബലത്തിന് പങ്കുണ്ട്. ട്രോജൻ ഛിന്നഗ്രഹങ്ങൾ എന്നാണവ വിളിക്കപ്പെടുന്നത്, ഇലിയഡിനെ അനുസ്മരിച്ച് ഇവയെ ഗ്രീക്ക് ക്യാമ്പെന്നും ട്രോജൻ ക്യാമ്പെന്നും വിളിക്കുന്നു. 588 ആഷില്ലെസ് ആണ് അവയിലെ ആദ്യം കണ്ടെത്തിയ ഛിന്നഗ്രഹം, 1906 ൽ മാക്സ് വോൾഫാണ് അതിനെ തിരിച്ചറിഞ്ഞത്; അതിനുശേഷം അവയിലെ രണ്ടായിരത്തിലേറെ എണ്ണത്തിനെ കണ്ടെത്തിയിട്ടുണ്ട്. 624 ഹെക്റ്റൊർ ആണ് അവയിൽ വലുത്.
ഹ്രസ്വകാല വാൽനക്ഷത്രങ്ങളിലെ ഭൂരിഭാഗവും വ്യാഴത്തിന്റെ കുടുംബത്തിൽപ്പെട്ടതാണ്, സെമി-മേജർ അക്ഷം വ്യാഴത്തിന്റേതിനേക്കാൾ കുറഞ്ഞ വാൽനക്ഷത്രങ്ങളെ വ്യാഴത്തിന്റെ കുടുംബം എന്നാണ് വിളിക്കുന്നത്. തുടക്കത്തിൽ നെപ്റ്റ്യൂണിനപ്പുറം കിടക്കുന്ന കൈപ്പർ വലയത്തിൽ നിന്നും ഉൽഭവിക്കുന്നവയാണ് വ്യാഴ കുടുംബ വാൽനക്ഷത്രങ്ങൾ. സഞ്ചാരവേളയിൽ സമീപം എത്തുമ്പോൾ വ്യാഴം അവയുടെ സഞ്ചാരക്രമത്തിൽ മാറ്റം വരുത്തുകയും സൂര്യന്റേയും വ്യാഴത്തിന്റേയും ഗുരുത്വ പ്രതിപ്രവർത്തനം നിമിത്തം വൃത്തപാതയിൽ സഞ്ചരിക്കൻ നിർബന്ധിക്കപ്പെടുകയും ചെയ്യുന്നു.
കൂട്ടിയിടികൾ
വലിയ ഗുരുത്വ ഗർത്തവും ആന്തര സൗരയൂഥത്തിനടത്തുള്ള സ്ഥാനവും കാരണം വ്യാഴത്തെ സൗരയൂഥത്തിലെ വാക്വം ക്ലീനർ എന്ന് വിശേഷിപ്പിക്കാറുണ്ട്. സൗരയൂഥ ഗ്രഹങ്ങളിൽ ഏറ്റവും കൂടുതൽ വാൽനക്ഷത്ര കൂട്ടിയിടിക്ക് വിധേയമാകുന്നത് ഈ ഗ്രഹമാണ്. ആന്തര സൗരയൂഥത്തെ വാൽനക്ഷത്ര കൂട്ടിയിടികളിൽ നിന്ന് വ്യാഴം സംരക്ഷിക്കുന്നു എന്ന് കരുതപ്പെട്ടിരുന്നു. എന്നാൽ വ്യാഴം വലിച്ചെടുപ്പിക്കുകയും തെറിപ്പിച്ചുകളയുകയും ചെയ്യുന്ന എണ്ണത്തിന് ആനുപാതികമായ അളവ് എണ്ണത്തെ അത് ഉൾഭാഗത്തേക്ക് വഴിതിരിച്ചു വിടുകയും ചെയ്യുന്നുണ്ട് എന്ന് കമ്പ്യൂട്ടർ മാതൃകകളിൽ തെളിഞ്ഞിട്ടുമുണ്ട്. ഇക്കാര്യത്തിൽ ജ്യോതിശാസ്ത്രജ്ഞന്മാർക്ക് അഭിപ്രായ വ്യത്യാസമുണ്ട്, വ്യാഴം കൈപ്പർ വലയത്തിൽ നിന്ന് വാൽനക്ഷത്രങ്ങളെ വലിച്ചെടുത്ത് ഭൂമിക്ക് നേരേ വിടുന്നുണ്ടെന്ന് ചിലർ അഭിപ്രായപ്പെടുമ്പോൾ മറ്റുചിലർ നിലനിൽക്കുന്നുണ്ടെന്ന് തെളിയിക്കപ്പെടാത്ത ഊർട്ട് മേഘത്തിൽ നിന്നും വ്യാഴം ഭൂമിയെ സംരക്ഷിക്കുന്നുണ്ടെന്നുള്ള അഭിപ്രായക്കാരാണ്.
ജ്യോതിശാ‍സ്ത്രജ്ഞനായ കാസ്സിനി 1690 ൽ വ്യാഴത്തിലെ ഒരു കൂട്ടിയിടി കളങ്കം രേഖപ്പെടുത്തിയിരിക്കാമെന്ന് 1997 ൽ നടത്തിയ പഴയ ജ്യോതിശാസ്ത്ര വരപ്പുകൾ പരിശോധിക്കുന്നതിനിടയിൽ നിന്ന് മനസ്സിലാകുന്നത്. മറ്റ് എട്ട് നിരീക്ഷണ വരപ്പുകളിൽ കൂട്ടിയിടിയുടെ നേരിയ സാധ്യത മാത്രമോ അല്ലെങ്കിൽ സാധ്യതകളൊന്നും തന്നെയും രേഖപ്പെടുത്തിയിരുന്നില്ല. 1994 ജൂലൈ 16 നും ജൂലൈ 22 നും ഇടയിൽ ഷുമാക്കർ ലെവി 9 വാൽനക്ഷത്രത്തിന്റെ 20 ൽ കൂടുതൽ ഖണ്ഡങ്ങൾ വ്യാഴത്തിന്റെ ദക്ഷിണാർദ്ധഗോളവുമായി കൂട്ടിയിടിക്കുകയുണ്ടായി, സൗരയൂഥത്തിലെ രണ്ട് വസ്തുക്കൾ കൂട്ടിയിടിക്കുന്നത് നേരിട്ട് നിരീക്ഷിക്കാൻ ലഭിച്ച് അവസരമായിരുന്നു അത്. ഈ കൂട്ടിയിടി നിരീക്ഷിക്കുക വഴി വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിന്റെ ഘടകങ്ങളെപ്പറ്റി നല്ല വിവരങ്ങൾ കരസ്ഥമാക്കാനും കഴിഞ്ഞിരുന്നു.
2009 ജൂലൈ 19 ന് ഏതാണ്ട് 216 രേഖാംശത്തിൽ സിസ്റ്റം 2 ൽ ഒരു കൂട്ടിയിടി മേഖല കണ്ടെത്തുകയുണ്ടായി. വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിൽ ഒരു കറുത്ത കളങ്കം കൂട്ടിയിടി ഫലമായി സൃഷ്ടിക്കപ്പെട്ടു, വലിപ്പത്തിൽ ഓവൽ BA ക്ക് സമാനമായിരുന്നു ആ കളങ്കം. ഇൻഫ്രാ‍റെഡ് നിരീക്ഷണങ്ങളിൽ കൂട്ടിയിടി നടന്ന സ്ഥലത്ത് തെളിഞ്ഞ് പൊട്ട് വ്യക്തമായിരുന്നു, ദക്ഷിണാർദ്ധഗോളത്തിനോടടുത്ത ആ മേഖലയിലെ താഴ്ന്ന അന്തരീക്ഷഭാഗം ചൂട് പിടിച്ചിട്ടുണ്ടായിരുന്നു എന്ന് അതിൽനിന്നും മനസ്സിലാകുന്നു.
മുൻപ് നടന്ന കൂട്ടിയിടികളേക്കാൾ ചെറിയ മറ്റൊന്ന് 2010 ജൂൺ 3 ന് സംഭവിച്ചതായി അന്തോണി വെസ്ലി കണ്ടെത്തി, ആസ്ട്രേലിയക്കാരനായ അമേച്വർ ജ്യോതിശാസ്ത്രജ്ഞനാണ് അദ്ദേഹം, ആ കൂട്ടിയിടിയുടെ വീഡിയോ ഫിലിപൈൻസിലെ മറ്റൊരു അമേച്വർ ജ്യോതിശാസ്ത്രജ്ഞാൻ റെക്കോർഡ് ചെയ്തിട്ടുണ്ടായിരുന്നെന്ന് പിന്നീട് മനസ്സിലാകുകയും ചെയ്തു.
ജീവനുണ്ടാകാനുള്ള സാധ്യത
മിന്നലും അനാദി ഭൂമിയിലെ അന്തരീക്ഷത്തിൽ കാണപ്പെട്ടിരുന്ന സം‌യുക്തങ്ങളും ഒരുമിച്ച് വരുന്നത് ജൈവ സൃഷ്ടിയുടെ ഭാഗമാകുന്ന അമിനോ ആസിഡുകൾ പോലെയുള്ള ജൈവ സം‌യുക്തങ്ങൾ രൂപപ്പെടാൻ സഹായിക്കുമെന്ന് 1953 ലെ മില്ലെർ-യുറേ പരീക്ഷണത്തിൽ കണ്ടിരുന്നു. അതേ അവസ്ഥയിൽ ജലം, മീഥെയ്ൻ, അമോണിയ, മൂലക ഹൈഡ്രജൻ തുടങ്ങിയവയൊക്കെ വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിലും കാണപ്പെടുന്നുണ്ട്. പക്ഷെ വ്യാഴത്തിന്റെ അന്തരീക്ഷത്തിൽ ശക്തമായ ലംബപ്രവാഹങ്ങൾ നടക്കുന്നുണ്ട്, അവ ഇത്തരം സം‌യുക്തങ്ങലെ താഴ്ഭാഗങ്ങളിലേക്ക് വഹിച്ചു കൊണ്ട് പോകുന്നു. അന്തരീക്ഷത്തിനു താഴെ ഉയർന്ന താപനിലയാണുള്ളത്, ആ സാഹചര്യത്തിൽ ഇത്തരം രാസ സം‌യുക്തങ്ങൾ വിഘടിക്കുമെന്നതിനാൽ ഭൂമിയിലെ പോലെയുള്ള ജീവന്റെ ഉല്പത്തിക്ക് സഹായിക്കില്ല.
വളരെ കുറഞ്ഞ അളവിലേ ജലം അന്തരീക്ഷത്തിലുള്ളൂ എന്നതിനാലും ഉറച്ച ഉപരിതലം ഉണ്ടെങ്കിൽതന്നെ വളരെ ഉയർന്ന മർദ്ദമായിരിക്കും അവിടെയെന്നതിനാലും ഭൂമിയിലെ പോലെയുള്ള ജീവൻ വ്യാഴത്തിലുണ്ടായിരിക്കാനുള്ള സാധ്യത വളരെ കുറവാണ്. 1976 ലെ വോയേജർ സംരംഭത്തിനു മുൻപ്‌ അമോണിയ അല്ലെങ്കിൽ ജലം അടിസ്ഥാനമാക്കിയുള്ള ജീവൻ വ്യാഴത്തിന്റെ മുകൾ അന്തരീക്ഷത്തിൽ ഉണ്ടായിരിക്കുമെന്ന സങ്കൽപ്പം ഉണ്ടായിരുന്നു.
വ്യാഴോപ്രഗ്രഹങ്ങളുടെ ഉപരിതലത്തിനു കീഴെ സമുദ്രങ്ങളുണ്ടാകാനുള്ള സാധ്യതയുള്ളതിനാൽ ജീവന്റെ സാധ്യത കൂടുതൽ അത്തരം ഉപഗ്രഹങ്ങളിലായിരിക്കും എന്ന നിഗമനത്തിലാണ് ഇപ്പോഴുള്ളത്.
പുരാതന ഐതിഹ്യങ്ങൾ
വളരെ പുരാതനകാലം മുതലേ വ്യഴത്തെ മനുഷ്യന് പരിചയമുണ്ടായിരുന്നു. രാത്രി ആകാശത്തിൽ പെട്ടെന്ന് തന്നെ വ്യാഴം കണ്ണിൽപ്പെടും പകൽ സൂര്യൻ മങ്ങിയിരിക്കുന്ന വേളകളിലും ഗ്രഹം നേത്രങ്ങൾക്ക് ദൃശ്യമാകും. ബാബിലോണിയക്കാർക്ക് ഇത് അവരുടെ ദൈവമായ മർദൂക്ക് (Marduk) ആണ്. അവരുടെ രാശിചക്രത്തിലെ വ്യത്യസ്ത രാശികളെ നിർവ്വചിക്കാൻ ക്രാന്തിവൃത്തിലൂടെയുള്ള വ്യാഴത്തിന്റെ 12 വർഷക്കാല പരിക്രമണ പഥമായിരുന്നു അവർ ഉപയോഗിച്ചത്.
റോമക്കാർ തങ്ങളുടെ ദേവന്മാരുടെ നേതാവായ ജൂപ്പിറ്ററിന്റെ (ലത്തീൻ: Iuppiter, Iūpiter, ജോവ് (Jove) എന്നും വിളിക്കുന്നു) പേരാണ് ഗ്രഹത്തിന് നൽകിയിരിക്കുന്നത്. പ്രാകൃത ഇന്തോ-യൂറോപ്യൻ സംസ്കാരത്തിലെ “ദൈവപിതാവ്” എന്നർത്ഥം വരുന്ന *dyeu ph2ter എന്ന വാക്കിൽ നിന്നാണ് പദത്തിന്റെ ഉത്ഭവം. വ്യാഴത്തിന്റെ ജ്യോതിശാസ്ത്ര സൂചകമായ ♃ എന്നത് ദേവന്റെ മിന്നൽ ദണ്ഡിന്റെ ഭംഗി വരുത്തിയ രൂപമാണ്. റോമക്കാർ ഗ്രീക്കുകാരുടെ സിയൂസിൽ നിന്നാണ് അവരുടെ ഈ ദേവനെ കടംകൊണ്ടിരിക്കുന്നത്, വ്യാഴവുമായി സംബന്ധമായ പലവാക്കുകൾക്കും zeno- എന്ന പ്രത്യയം ചേർക്കാറുണ്ട്.
ജൂപ്പിറ്റർ എന്ന നാമത്തിന്റെ വിശേഷണപദമാണ് ജോവിയൻ (Jovian) എന്നുള്ളത്. മധ്യകാല വാനനിരീക്ഷകർ ജോവിയൽ (jovial) എന്ന പഴയ രൂപമായിരുന്നു ഉപയോഗിച്ചിരുന്നത്, വ്യാഴത്തിന്റെ ജ്യോതിഷ പരമായ സ്വാധീനങ്ങൾ ഉൾക്കൊള്ളാനായാണ് “സന്തോഷം”, “ഉല്ലാസം” എന്നിങ്ങനെയൊക്കെ അർത്ഥമുള്ള ആ പദം ഉപയോഗിക്കപ്പെട്ടത്.
ചൈനീസ് പഞ്ചഭൂതങ്ങളെ അടിസ്ഥാനമാക്കി ചൈനീസ്, കൊറിയൻ, ജപ്പാനീസ് എന്നിവർ ഇതിനെ മര നക്ഷത്രം എന്ന് സൂചിപ്പിച്ചു (ചൈനീസ്: 木星; pinyin: mùxīng).ഗ്രീക്കുകാർ ഇതിനെ “ജ്വലിക്കുന്ന” എന്നർത്ഥത്തിലുള്ള ഫെയ്ഥൺ (Phaethon) എന്നണ് വിളിച്ചത്. പൗരാണിക ഭാരതീയ ജ്യോതിഷം പ്രാകാരം ഗ്രഹം ദേവഗുരുവായ ബൃഹസ്പതിയാണ്. ഇംഗ്ലീഷ് ഭാഷയിൽ വ്യാഴാഴ്ചയെ സൂചിപ്പിക്കാനുപയോഗിക്കുന്ന തഴ്സ്ഡേ “Thor’s day” എന്നതിൽനിന്ന് വന്നതാണ്, ജർമ്മൻ ഐതിഹ്യത്തിൽ വ്യാഴത്തിന്റെ പേരാണ് തോർ (Thor).